| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zndvdchrrhm.1 |
|- ( ph -> R e. Ring ) |
| 2 |
|
zndvdchrrhm.2 |
|- ( ph -> N e. NN ) |
| 3 |
|
zndvdchrrhm.3 |
|- ( ph -> ( chr ` R ) e. ZZ ) |
| 4 |
|
zndvdchrrhm.4 |
|- ( ph -> ( chr ` R ) || N ) |
| 5 |
|
zndvdchrrhm.5 |
|- Z = ( Z/nZ ` N ) |
| 6 |
|
zndvdchrrhm.6 |
|- F = ( x e. ( Base ` Z ) |-> U. ( ( ZRHom ` R ) " x ) ) |
| 7 |
2
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 8 |
|
eqid |
|- ( RSpan ` ZZring ) = ( RSpan ` ZZring ) |
| 9 |
|
eqid |
|- ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) |
| 10 |
8 9 5
|
znbas2 |
|- ( N e. NN0 -> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( Base ` Z ) ) |
| 11 |
7 10
|
syl |
|- ( ph -> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( Base ` Z ) ) |
| 12 |
11
|
eqcomd |
|- ( ph -> ( Base ` Z ) = ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) ) |
| 13 |
12
|
mpteq1d |
|- ( ph -> ( x e. ( Base ` Z ) |-> U. ( ( ZRHom ` R ) " x ) ) = ( x e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |-> U. ( ( ZRHom ` R ) " x ) ) ) |
| 14 |
6 13
|
eqtrid |
|- ( ph -> F = ( x e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |-> U. ( ( ZRHom ` R ) " x ) ) ) |
| 15 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 16 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
| 17 |
16
|
zrhrhm |
|- ( R e. Ring -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
| 18 |
1 17
|
syl |
|- ( ph -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
| 19 |
|
eqid |
|- ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) = ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) |
| 20 |
|
nfcv |
|- F/_ y U. ( ( ZRHom ` R ) " x ) |
| 21 |
|
nfcv |
|- F/_ x U. ( ( ZRHom ` R ) " y ) |
| 22 |
|
imaeq2 |
|- ( x = y -> ( ( ZRHom ` R ) " x ) = ( ( ZRHom ` R ) " y ) ) |
| 23 |
22
|
unieqd |
|- ( x = y -> U. ( ( ZRHom ` R ) " x ) = U. ( ( ZRHom ` R ) " y ) ) |
| 24 |
20 21 23
|
cbvmpt |
|- ( x e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |-> U. ( ( ZRHom ` R ) " x ) ) = ( y e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |-> U. ( ( ZRHom ` R ) " y ) ) |
| 25 |
|
zringcrng |
|- ZZring e. CRing |
| 26 |
25
|
a1i |
|- ( ph -> ZZring e. CRing ) |
| 27 |
|
zringring |
|- ZZring e. Ring |
| 28 |
27
|
a1i |
|- ( ph -> ZZring e. Ring ) |
| 29 |
|
eqid |
|- ( LIdeal ` ZZring ) = ( LIdeal ` ZZring ) |
| 30 |
29 15
|
kerlidl |
|- ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) e. ( LIdeal ` ZZring ) ) |
| 31 |
18 30
|
syl |
|- ( ph -> ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) e. ( LIdeal ` ZZring ) ) |
| 32 |
|
simpr |
|- ( ( ph /\ a e. { N } ) -> a e. { N } ) |
| 33 |
|
elsng |
|- ( a e. { N } -> ( a e. { N } <-> a = N ) ) |
| 34 |
32 33
|
syl5ibcom |
|- ( ( ph /\ a e. { N } ) -> ( a e. { N } -> a = N ) ) |
| 35 |
34
|
imp |
|- ( ( ( ph /\ a e. { N } ) /\ a e. { N } ) -> a = N ) |
| 36 |
32 35
|
mpdan |
|- ( ( ph /\ a e. { N } ) -> a = N ) |
| 37 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 38 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 39 |
37 38
|
rhmf |
|- ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
| 40 |
17 39
|
syl |
|- ( R e. Ring -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
| 41 |
1 40
|
syl |
|- ( ph -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
| 42 |
41
|
ffnd |
|- ( ph -> ( ZRHom ` R ) Fn ZZ ) |
| 43 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 44 |
|
eqid |
|- ( chr ` R ) = ( chr ` R ) |
| 45 |
44 16 15
|
chrdvds |
|- ( ( R e. Ring /\ N e. ZZ ) -> ( ( chr ` R ) || N <-> ( ( ZRHom ` R ) ` N ) = ( 0g ` R ) ) ) |
| 46 |
1 43 45
|
syl2anc |
|- ( ph -> ( ( chr ` R ) || N <-> ( ( ZRHom ` R ) ` N ) = ( 0g ` R ) ) ) |
| 47 |
4 46
|
mpbid |
|- ( ph -> ( ( ZRHom ` R ) ` N ) = ( 0g ` R ) ) |
| 48 |
|
fvexd |
|- ( ph -> ( ( ZRHom ` R ) ` N ) e. _V ) |
| 49 |
|
elsng |
|- ( ( ( ZRHom ` R ) ` N ) e. _V -> ( ( ( ZRHom ` R ) ` N ) e. { ( 0g ` R ) } <-> ( ( ZRHom ` R ) ` N ) = ( 0g ` R ) ) ) |
| 50 |
48 49
|
syl |
|- ( ph -> ( ( ( ZRHom ` R ) ` N ) e. { ( 0g ` R ) } <-> ( ( ZRHom ` R ) ` N ) = ( 0g ` R ) ) ) |
| 51 |
47 50
|
mpbird |
|- ( ph -> ( ( ZRHom ` R ) ` N ) e. { ( 0g ` R ) } ) |
| 52 |
42 43 51
|
elpreimad |
|- ( ph -> N e. ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ a e. { N } ) -> N e. ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) |
| 54 |
36 53
|
eqeltrd |
|- ( ( ph /\ a e. { N } ) -> a e. ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) |
| 55 |
54
|
ex |
|- ( ph -> ( a e. { N } -> a e. ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) ) |
| 56 |
55
|
ssrdv |
|- ( ph -> { N } C_ ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) |
| 57 |
8 29
|
rspssp |
|- ( ( ZZring e. Ring /\ ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) e. ( LIdeal ` ZZring ) /\ { N } C_ ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) -> ( ( RSpan ` ZZring ) ` { N } ) C_ ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) |
| 58 |
28 31 56 57
|
syl3anc |
|- ( ph -> ( ( RSpan ` ZZring ) ` { N } ) C_ ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) |
| 59 |
26
|
crngringd |
|- ( ph -> ZZring e. Ring ) |
| 60 |
43
|
adantr |
|- ( ( ph /\ a e. { N } ) -> N e. ZZ ) |
| 61 |
36 60
|
eqeltrd |
|- ( ( ph /\ a e. { N } ) -> a e. ZZ ) |
| 62 |
61
|
ex |
|- ( ph -> ( a e. { N } -> a e. ZZ ) ) |
| 63 |
62
|
ssrdv |
|- ( ph -> { N } C_ ZZ ) |
| 64 |
8 37 29
|
rspcl |
|- ( ( ZZring e. Ring /\ { N } C_ ZZ ) -> ( ( RSpan ` ZZring ) ` { N } ) e. ( LIdeal ` ZZring ) ) |
| 65 |
59 63 64
|
syl2anc |
|- ( ph -> ( ( RSpan ` ZZring ) ` { N } ) e. ( LIdeal ` ZZring ) ) |
| 66 |
15 18 19 9 24 26 58 65
|
rhmqusnsg |
|- ( ph -> ( x e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |-> U. ( ( ZRHom ` R ) " x ) ) e. ( ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) RingHom R ) ) |
| 67 |
14 66
|
eqeltrd |
|- ( ph -> F e. ( ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) RingHom R ) ) |
| 68 |
|
eqidd |
|- ( ph -> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) ) |
| 69 |
|
eqidd |
|- ( ph -> ( Base ` R ) = ( Base ` R ) ) |
| 70 |
8 9 5
|
znadd |
|- ( N e. NN0 -> ( +g ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( +g ` Z ) ) |
| 71 |
7 70
|
syl |
|- ( ph -> ( +g ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( +g ` Z ) ) |
| 72 |
71
|
oveqdr |
|- ( ( ph /\ ( a e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) /\ b e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) ) ) -> ( a ( +g ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) b ) = ( a ( +g ` Z ) b ) ) |
| 73 |
|
eqidd |
|- ( ( ph /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) ) ) -> ( a ( +g ` R ) b ) = ( a ( +g ` R ) b ) ) |
| 74 |
8 9 5
|
znmul |
|- ( N e. NN0 -> ( .r ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( .r ` Z ) ) |
| 75 |
7 74
|
syl |
|- ( ph -> ( .r ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( .r ` Z ) ) |
| 76 |
75
|
oveqdr |
|- ( ( ph /\ ( a e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) /\ b e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) ) ) -> ( a ( .r ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) b ) = ( a ( .r ` Z ) b ) ) |
| 77 |
|
eqidd |
|- ( ( ph /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) ) ) -> ( a ( .r ` R ) b ) = ( a ( .r ` R ) b ) ) |
| 78 |
68 69 11 69 72 73 76 77
|
rhmpropd |
|- ( ph -> ( ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) RingHom R ) = ( Z RingHom R ) ) |
| 79 |
67 78
|
eleqtrd |
|- ( ph -> F e. ( Z RingHom R ) ) |