| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zndvdchrrhm.1 |  |-  ( ph -> R e. Ring ) | 
						
							| 2 |  | zndvdchrrhm.2 |  |-  ( ph -> N e. NN ) | 
						
							| 3 |  | zndvdchrrhm.3 |  |-  ( ph -> ( chr ` R ) e. ZZ ) | 
						
							| 4 |  | zndvdchrrhm.4 |  |-  ( ph -> ( chr ` R ) || N ) | 
						
							| 5 |  | zndvdchrrhm.5 |  |-  Z = ( Z/nZ ` N ) | 
						
							| 6 |  | zndvdchrrhm.6 |  |-  F = ( x e. ( Base ` Z ) |-> U. ( ( ZRHom ` R ) " x ) ) | 
						
							| 7 | 2 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 8 |  | eqid |  |-  ( RSpan ` ZZring ) = ( RSpan ` ZZring ) | 
						
							| 9 |  | eqid |  |-  ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) | 
						
							| 10 | 8 9 5 | znbas2 |  |-  ( N e. NN0 -> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( Base ` Z ) ) | 
						
							| 11 | 7 10 | syl |  |-  ( ph -> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( Base ` Z ) ) | 
						
							| 12 | 11 | eqcomd |  |-  ( ph -> ( Base ` Z ) = ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) ) | 
						
							| 13 | 12 | mpteq1d |  |-  ( ph -> ( x e. ( Base ` Z ) |-> U. ( ( ZRHom ` R ) " x ) ) = ( x e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |-> U. ( ( ZRHom ` R ) " x ) ) ) | 
						
							| 14 | 6 13 | eqtrid |  |-  ( ph -> F = ( x e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |-> U. ( ( ZRHom ` R ) " x ) ) ) | 
						
							| 15 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 16 |  | eqid |  |-  ( ZRHom ` R ) = ( ZRHom ` R ) | 
						
							| 17 | 16 | zrhrhm |  |-  ( R e. Ring -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) | 
						
							| 18 | 1 17 | syl |  |-  ( ph -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) | 
						
							| 19 |  | eqid |  |-  ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) = ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) | 
						
							| 20 |  | nfcv |  |-  F/_ y U. ( ( ZRHom ` R ) " x ) | 
						
							| 21 |  | nfcv |  |-  F/_ x U. ( ( ZRHom ` R ) " y ) | 
						
							| 22 |  | imaeq2 |  |-  ( x = y -> ( ( ZRHom ` R ) " x ) = ( ( ZRHom ` R ) " y ) ) | 
						
							| 23 | 22 | unieqd |  |-  ( x = y -> U. ( ( ZRHom ` R ) " x ) = U. ( ( ZRHom ` R ) " y ) ) | 
						
							| 24 | 20 21 23 | cbvmpt |  |-  ( x e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |-> U. ( ( ZRHom ` R ) " x ) ) = ( y e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |-> U. ( ( ZRHom ` R ) " y ) ) | 
						
							| 25 |  | zringcrng |  |-  ZZring e. CRing | 
						
							| 26 | 25 | a1i |  |-  ( ph -> ZZring e. CRing ) | 
						
							| 27 |  | zringring |  |-  ZZring e. Ring | 
						
							| 28 | 27 | a1i |  |-  ( ph -> ZZring e. Ring ) | 
						
							| 29 |  | eqid |  |-  ( LIdeal ` ZZring ) = ( LIdeal ` ZZring ) | 
						
							| 30 | 29 15 | kerlidl |  |-  ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) e. ( LIdeal ` ZZring ) ) | 
						
							| 31 | 18 30 | syl |  |-  ( ph -> ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) e. ( LIdeal ` ZZring ) ) | 
						
							| 32 |  | simpr |  |-  ( ( ph /\ a e. { N } ) -> a e. { N } ) | 
						
							| 33 |  | elsng |  |-  ( a e. { N } -> ( a e. { N } <-> a = N ) ) | 
						
							| 34 | 32 33 | syl5ibcom |  |-  ( ( ph /\ a e. { N } ) -> ( a e. { N } -> a = N ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( ( ph /\ a e. { N } ) /\ a e. { N } ) -> a = N ) | 
						
							| 36 | 32 35 | mpdan |  |-  ( ( ph /\ a e. { N } ) -> a = N ) | 
						
							| 37 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 38 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 39 | 37 38 | rhmf |  |-  ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) | 
						
							| 40 | 17 39 | syl |  |-  ( R e. Ring -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) | 
						
							| 41 | 1 40 | syl |  |-  ( ph -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) | 
						
							| 42 | 41 | ffnd |  |-  ( ph -> ( ZRHom ` R ) Fn ZZ ) | 
						
							| 43 | 2 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 44 |  | eqid |  |-  ( chr ` R ) = ( chr ` R ) | 
						
							| 45 | 44 16 15 | chrdvds |  |-  ( ( R e. Ring /\ N e. ZZ ) -> ( ( chr ` R ) || N <-> ( ( ZRHom ` R ) ` N ) = ( 0g ` R ) ) ) | 
						
							| 46 | 1 43 45 | syl2anc |  |-  ( ph -> ( ( chr ` R ) || N <-> ( ( ZRHom ` R ) ` N ) = ( 0g ` R ) ) ) | 
						
							| 47 | 4 46 | mpbid |  |-  ( ph -> ( ( ZRHom ` R ) ` N ) = ( 0g ` R ) ) | 
						
							| 48 |  | fvexd |  |-  ( ph -> ( ( ZRHom ` R ) ` N ) e. _V ) | 
						
							| 49 |  | elsng |  |-  ( ( ( ZRHom ` R ) ` N ) e. _V -> ( ( ( ZRHom ` R ) ` N ) e. { ( 0g ` R ) } <-> ( ( ZRHom ` R ) ` N ) = ( 0g ` R ) ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( ph -> ( ( ( ZRHom ` R ) ` N ) e. { ( 0g ` R ) } <-> ( ( ZRHom ` R ) ` N ) = ( 0g ` R ) ) ) | 
						
							| 51 | 47 50 | mpbird |  |-  ( ph -> ( ( ZRHom ` R ) ` N ) e. { ( 0g ` R ) } ) | 
						
							| 52 | 42 43 51 | elpreimad |  |-  ( ph -> N e. ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ph /\ a e. { N } ) -> N e. ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) | 
						
							| 54 | 36 53 | eqeltrd |  |-  ( ( ph /\ a e. { N } ) -> a e. ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) | 
						
							| 55 | 54 | ex |  |-  ( ph -> ( a e. { N } -> a e. ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) ) | 
						
							| 56 | 55 | ssrdv |  |-  ( ph -> { N } C_ ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) | 
						
							| 57 | 8 29 | rspssp |  |-  ( ( ZZring e. Ring /\ ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) e. ( LIdeal ` ZZring ) /\ { N } C_ ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) -> ( ( RSpan ` ZZring ) ` { N } ) C_ ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) | 
						
							| 58 | 28 31 56 57 | syl3anc |  |-  ( ph -> ( ( RSpan ` ZZring ) ` { N } ) C_ ( `' ( ZRHom ` R ) " { ( 0g ` R ) } ) ) | 
						
							| 59 | 26 | crngringd |  |-  ( ph -> ZZring e. Ring ) | 
						
							| 60 | 43 | adantr |  |-  ( ( ph /\ a e. { N } ) -> N e. ZZ ) | 
						
							| 61 | 36 60 | eqeltrd |  |-  ( ( ph /\ a e. { N } ) -> a e. ZZ ) | 
						
							| 62 | 61 | ex |  |-  ( ph -> ( a e. { N } -> a e. ZZ ) ) | 
						
							| 63 | 62 | ssrdv |  |-  ( ph -> { N } C_ ZZ ) | 
						
							| 64 | 8 37 29 | rspcl |  |-  ( ( ZZring e. Ring /\ { N } C_ ZZ ) -> ( ( RSpan ` ZZring ) ` { N } ) e. ( LIdeal ` ZZring ) ) | 
						
							| 65 | 59 63 64 | syl2anc |  |-  ( ph -> ( ( RSpan ` ZZring ) ` { N } ) e. ( LIdeal ` ZZring ) ) | 
						
							| 66 | 15 18 19 9 24 26 58 65 | rhmqusnsg |  |-  ( ph -> ( x e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |-> U. ( ( ZRHom ` R ) " x ) ) e. ( ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) RingHom R ) ) | 
						
							| 67 | 14 66 | eqeltrd |  |-  ( ph -> F e. ( ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) RingHom R ) ) | 
						
							| 68 |  | eqidd |  |-  ( ph -> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) ) | 
						
							| 69 |  | eqidd |  |-  ( ph -> ( Base ` R ) = ( Base ` R ) ) | 
						
							| 70 | 8 9 5 | znadd |  |-  ( N e. NN0 -> ( +g ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( +g ` Z ) ) | 
						
							| 71 | 7 70 | syl |  |-  ( ph -> ( +g ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( +g ` Z ) ) | 
						
							| 72 | 71 | oveqdr |  |-  ( ( ph /\ ( a e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) /\ b e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) ) ) -> ( a ( +g ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) b ) = ( a ( +g ` Z ) b ) ) | 
						
							| 73 |  | eqidd |  |-  ( ( ph /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) ) ) -> ( a ( +g ` R ) b ) = ( a ( +g ` R ) b ) ) | 
						
							| 74 | 8 9 5 | znmul |  |-  ( N e. NN0 -> ( .r ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( .r ` Z ) ) | 
						
							| 75 | 7 74 | syl |  |-  ( ph -> ( .r ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( .r ` Z ) ) | 
						
							| 76 | 75 | oveqdr |  |-  ( ( ph /\ ( a e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) /\ b e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) ) ) -> ( a ( .r ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) b ) = ( a ( .r ` Z ) b ) ) | 
						
							| 77 |  | eqidd |  |-  ( ( ph /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) ) ) -> ( a ( .r ` R ) b ) = ( a ( .r ` R ) b ) ) | 
						
							| 78 | 68 69 11 69 72 73 76 77 | rhmpropd |  |-  ( ph -> ( ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) RingHom R ) = ( Z RingHom R ) ) | 
						
							| 79 | 67 78 | eleqtrd |  |-  ( ph -> F e. ( Z RingHom R ) ) |