| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmqusnsg.0 |  |-  .0. = ( 0g ` H ) | 
						
							| 2 |  | rhmqusnsg.f |  |-  ( ph -> F e. ( G RingHom H ) ) | 
						
							| 3 |  | rhmqusnsg.k |  |-  K = ( `' F " { .0. } ) | 
						
							| 4 |  | rhmqusnsg.q |  |-  Q = ( G /s ( G ~QG N ) ) | 
						
							| 5 |  | rhmqusnsg.j |  |-  J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) | 
						
							| 6 |  | rhmqusnsg.g |  |-  ( ph -> G e. CRing ) | 
						
							| 7 |  | rhmqusnsg.n |  |-  ( ph -> N C_ K ) | 
						
							| 8 |  | rhmqusnsg.1 |  |-  ( ph -> N e. ( LIdeal ` G ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 10 |  | eqid |  |-  ( 1r ` Q ) = ( 1r ` Q ) | 
						
							| 11 |  | eqid |  |-  ( 1r ` H ) = ( 1r ` H ) | 
						
							| 12 |  | eqid |  |-  ( .r ` Q ) = ( .r ` Q ) | 
						
							| 13 |  | eqid |  |-  ( .r ` H ) = ( .r ` H ) | 
						
							| 14 | 6 | crngringd |  |-  ( ph -> G e. Ring ) | 
						
							| 15 |  | eqid |  |-  ( LIdeal ` G ) = ( LIdeal ` G ) | 
						
							| 16 | 15 | crng2idl |  |-  ( G e. CRing -> ( LIdeal ` G ) = ( 2Ideal ` G ) ) | 
						
							| 17 | 6 16 | syl |  |-  ( ph -> ( LIdeal ` G ) = ( 2Ideal ` G ) ) | 
						
							| 18 | 8 17 | eleqtrd |  |-  ( ph -> N e. ( 2Ideal ` G ) ) | 
						
							| 19 |  | eqid |  |-  ( 2Ideal ` G ) = ( 2Ideal ` G ) | 
						
							| 20 |  | eqid |  |-  ( 1r ` G ) = ( 1r ` G ) | 
						
							| 21 | 4 19 20 | qus1 |  |-  ( ( G e. Ring /\ N e. ( 2Ideal ` G ) ) -> ( Q e. Ring /\ [ ( 1r ` G ) ] ( G ~QG N ) = ( 1r ` Q ) ) ) | 
						
							| 22 | 14 18 21 | syl2anc |  |-  ( ph -> ( Q e. Ring /\ [ ( 1r ` G ) ] ( G ~QG N ) = ( 1r ` Q ) ) ) | 
						
							| 23 | 22 | simpld |  |-  ( ph -> Q e. Ring ) | 
						
							| 24 |  | rhmrcl2 |  |-  ( F e. ( G RingHom H ) -> H e. Ring ) | 
						
							| 25 | 2 24 | syl |  |-  ( ph -> H e. Ring ) | 
						
							| 26 |  | rhmghm |  |-  ( F e. ( G RingHom H ) -> F e. ( G GrpHom H ) ) | 
						
							| 27 | 2 26 | syl |  |-  ( ph -> F e. ( G GrpHom H ) ) | 
						
							| 28 |  | lidlnsg |  |-  ( ( G e. Ring /\ N e. ( LIdeal ` G ) ) -> N e. ( NrmSGrp ` G ) ) | 
						
							| 29 | 14 8 28 | syl2anc |  |-  ( ph -> N e. ( NrmSGrp ` G ) ) | 
						
							| 30 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 31 | 30 20 | ringidcl |  |-  ( G e. Ring -> ( 1r ` G ) e. ( Base ` G ) ) | 
						
							| 32 | 14 31 | syl |  |-  ( ph -> ( 1r ` G ) e. ( Base ` G ) ) | 
						
							| 33 | 1 27 3 4 5 7 29 32 | ghmqusnsglem1 |  |-  ( ph -> ( J ` [ ( 1r ` G ) ] ( G ~QG N ) ) = ( F ` ( 1r ` G ) ) ) | 
						
							| 34 | 22 | simprd |  |-  ( ph -> [ ( 1r ` G ) ] ( G ~QG N ) = ( 1r ` Q ) ) | 
						
							| 35 | 34 | fveq2d |  |-  ( ph -> ( J ` [ ( 1r ` G ) ] ( G ~QG N ) ) = ( J ` ( 1r ` Q ) ) ) | 
						
							| 36 | 20 11 | rhm1 |  |-  ( F e. ( G RingHom H ) -> ( F ` ( 1r ` G ) ) = ( 1r ` H ) ) | 
						
							| 37 | 2 36 | syl |  |-  ( ph -> ( F ` ( 1r ` G ) ) = ( 1r ` H ) ) | 
						
							| 38 | 33 35 37 | 3eqtr3d |  |-  ( ph -> ( J ` ( 1r ` Q ) ) = ( 1r ` H ) ) | 
						
							| 39 | 2 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> F e. ( G RingHom H ) ) | 
						
							| 40 | 4 | a1i |  |-  ( ph -> Q = ( G /s ( G ~QG N ) ) ) | 
						
							| 41 |  | eqidd |  |-  ( ph -> ( Base ` G ) = ( Base ` G ) ) | 
						
							| 42 |  | ovexd |  |-  ( ph -> ( G ~QG N ) e. _V ) | 
						
							| 43 | 40 41 42 6 | qusbas |  |-  ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) ) | 
						
							| 44 |  | nsgsubg |  |-  ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) | 
						
							| 45 |  | eqid |  |-  ( G ~QG N ) = ( G ~QG N ) | 
						
							| 46 | 30 45 | eqger |  |-  ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er ( Base ` G ) ) | 
						
							| 47 | 29 44 46 | 3syl |  |-  ( ph -> ( G ~QG N ) Er ( Base ` G ) ) | 
						
							| 48 | 47 | qsss |  |-  ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) C_ ~P ( Base ` G ) ) | 
						
							| 49 | 43 48 | eqsstrrd |  |-  ( ph -> ( Base ` Q ) C_ ~P ( Base ` G ) ) | 
						
							| 50 | 49 | sselda |  |-  ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ~P ( Base ` G ) ) | 
						
							| 51 | 50 | elpwid |  |-  ( ( ph /\ r e. ( Base ` Q ) ) -> r C_ ( Base ` G ) ) | 
						
							| 52 | 51 | ad5antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r C_ ( Base ` G ) ) | 
						
							| 53 |  | simp-4r |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. r ) | 
						
							| 54 | 52 53 | sseldd |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. ( Base ` G ) ) | 
						
							| 55 | 49 | sselda |  |-  ( ( ph /\ s e. ( Base ` Q ) ) -> s e. ~P ( Base ` G ) ) | 
						
							| 56 | 55 | elpwid |  |-  ( ( ph /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) ) | 
						
							| 57 | 56 | adantlr |  |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) ) | 
						
							| 58 | 57 | ad4antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s C_ ( Base ` G ) ) | 
						
							| 59 |  | simplr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. s ) | 
						
							| 60 | 58 59 | sseldd |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. ( Base ` G ) ) | 
						
							| 61 |  | eqid |  |-  ( .r ` G ) = ( .r ` G ) | 
						
							| 62 | 30 61 13 | rhmmul |  |-  ( ( F e. ( G RingHom H ) /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( F ` ( x ( .r ` G ) y ) ) = ( ( F ` x ) ( .r ` H ) ( F ` y ) ) ) | 
						
							| 63 | 39 54 60 62 | syl3anc |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( F ` ( x ( .r ` G ) y ) ) = ( ( F ` x ) ( .r ` H ) ( F ` y ) ) ) | 
						
							| 64 | 47 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( G ~QG N ) Er ( Base ` G ) ) | 
						
							| 65 |  | simp-6r |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( Base ` Q ) ) | 
						
							| 66 | 43 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) ) | 
						
							| 67 | 65 66 | eleqtrrd |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( ( Base ` G ) /. ( G ~QG N ) ) ) | 
						
							| 68 |  | qsel |  |-  ( ( ( G ~QG N ) Er ( Base ` G ) /\ r e. ( ( Base ` G ) /. ( G ~QG N ) ) /\ x e. r ) -> r = [ x ] ( G ~QG N ) ) | 
						
							| 69 | 64 67 53 68 | syl3anc |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r = [ x ] ( G ~QG N ) ) | 
						
							| 70 |  | simp-5r |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( Base ` Q ) ) | 
						
							| 71 | 70 66 | eleqtrrd |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( ( Base ` G ) /. ( G ~QG N ) ) ) | 
						
							| 72 |  | qsel |  |-  ( ( ( G ~QG N ) Er ( Base ` G ) /\ s e. ( ( Base ` G ) /. ( G ~QG N ) ) /\ y e. s ) -> s = [ y ] ( G ~QG N ) ) | 
						
							| 73 | 64 71 59 72 | syl3anc |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s = [ y ] ( G ~QG N ) ) | 
						
							| 74 | 69 73 | oveq12d |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( r ( .r ` Q ) s ) = ( [ x ] ( G ~QG N ) ( .r ` Q ) [ y ] ( G ~QG N ) ) ) | 
						
							| 75 | 6 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> G e. CRing ) | 
						
							| 76 | 8 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> N e. ( LIdeal ` G ) ) | 
						
							| 77 | 4 30 61 12 75 76 54 60 | qusmulcrng |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( [ x ] ( G ~QG N ) ( .r ` Q ) [ y ] ( G ~QG N ) ) = [ ( x ( .r ` G ) y ) ] ( G ~QG N ) ) | 
						
							| 78 | 74 77 | eqtr2d |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> [ ( x ( .r ` G ) y ) ] ( G ~QG N ) = ( r ( .r ` Q ) s ) ) | 
						
							| 79 | 78 | fveq2d |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` [ ( x ( .r ` G ) y ) ] ( G ~QG N ) ) = ( J ` ( r ( .r ` Q ) s ) ) ) | 
						
							| 80 | 39 26 | syl |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> F e. ( G GrpHom H ) ) | 
						
							| 81 | 7 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> N C_ K ) | 
						
							| 82 | 29 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> N e. ( NrmSGrp ` G ) ) | 
						
							| 83 |  | rhmrcl1 |  |-  ( F e. ( G RingHom H ) -> G e. Ring ) | 
						
							| 84 | 39 83 | syl |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> G e. Ring ) | 
						
							| 85 | 30 61 84 54 60 | ringcld |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( x ( .r ` G ) y ) e. ( Base ` G ) ) | 
						
							| 86 | 1 80 3 4 5 81 82 85 | ghmqusnsglem1 |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` [ ( x ( .r ` G ) y ) ] ( G ~QG N ) ) = ( F ` ( x ( .r ` G ) y ) ) ) | 
						
							| 87 | 79 86 | eqtr3d |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( F ` ( x ( .r ` G ) y ) ) ) | 
						
							| 88 |  | simpllr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` r ) = ( F ` x ) ) | 
						
							| 89 |  | simpr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` s ) = ( F ` y ) ) | 
						
							| 90 | 88 89 | oveq12d |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( J ` r ) ( .r ` H ) ( J ` s ) ) = ( ( F ` x ) ( .r ` H ) ( F ` y ) ) ) | 
						
							| 91 | 63 87 90 | 3eqtr4d |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( ( J ` r ) ( .r ` H ) ( J ` s ) ) ) | 
						
							| 92 | 27 | ad4antr |  |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F e. ( G GrpHom H ) ) | 
						
							| 93 | 7 | ad4antr |  |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> N C_ K ) | 
						
							| 94 | 29 | ad4antr |  |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> N e. ( NrmSGrp ` G ) ) | 
						
							| 95 |  | simpllr |  |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> s e. ( Base ` Q ) ) | 
						
							| 96 | 1 92 3 4 5 93 94 95 | ghmqusnsglem2 |  |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> E. y e. s ( J ` s ) = ( F ` y ) ) | 
						
							| 97 | 91 96 | r19.29a |  |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( ( J ` r ) ( .r ` H ) ( J ` s ) ) ) | 
						
							| 98 | 27 | ad2antrr |  |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) | 
						
							| 99 | 7 | ad2antrr |  |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> N C_ K ) | 
						
							| 100 | 29 | ad2antrr |  |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> N e. ( NrmSGrp ` G ) ) | 
						
							| 101 |  | simplr |  |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> r e. ( Base ` Q ) ) | 
						
							| 102 | 1 98 3 4 5 99 100 101 | ghmqusnsglem2 |  |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) ) | 
						
							| 103 | 97 102 | r19.29a |  |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( ( J ` r ) ( .r ` H ) ( J ` s ) ) ) | 
						
							| 104 | 103 | anasss |  |-  ( ( ph /\ ( r e. ( Base ` Q ) /\ s e. ( Base ` Q ) ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( ( J ` r ) ( .r ` H ) ( J ` s ) ) ) | 
						
							| 105 | 1 27 3 4 5 7 29 | ghmqusnsg |  |-  ( ph -> J e. ( Q GrpHom H ) ) | 
						
							| 106 | 9 10 11 12 13 23 25 38 104 105 | isrhm2d |  |-  ( ph -> J e. ( Q RingHom H ) ) |