| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmqusnsg.0 |  |-  .0. = ( 0g ` H ) | 
						
							| 2 |  | ghmqusnsg.f |  |-  ( ph -> F e. ( G GrpHom H ) ) | 
						
							| 3 |  | ghmqusnsg.k |  |-  K = ( `' F " { .0. } ) | 
						
							| 4 |  | ghmqusnsg.q |  |-  Q = ( G /s ( G ~QG N ) ) | 
						
							| 5 |  | ghmqusnsg.j |  |-  J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) | 
						
							| 6 |  | ghmqusnsg.n |  |-  ( ph -> N C_ K ) | 
						
							| 7 |  | ghmqusnsg.1 |  |-  ( ph -> N e. ( NrmSGrp ` G ) ) | 
						
							| 8 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 9 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 10 |  | eqid |  |-  ( +g ` Q ) = ( +g ` Q ) | 
						
							| 11 |  | eqid |  |-  ( +g ` H ) = ( +g ` H ) | 
						
							| 12 | 4 | qusgrp |  |-  ( N e. ( NrmSGrp ` G ) -> Q e. Grp ) | 
						
							| 13 | 7 12 | syl |  |-  ( ph -> Q e. Grp ) | 
						
							| 14 |  | ghmrn |  |-  ( F e. ( G GrpHom H ) -> ran F e. ( SubGrp ` H ) ) | 
						
							| 15 |  | subgrcl |  |-  ( ran F e. ( SubGrp ` H ) -> H e. Grp ) | 
						
							| 16 | 2 14 15 | 3syl |  |-  ( ph -> H e. Grp ) | 
						
							| 17 | 2 | adantr |  |-  ( ( ph /\ q e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) | 
						
							| 18 | 17 | imaexd |  |-  ( ( ph /\ q e. ( Base ` Q ) ) -> ( F " q ) e. _V ) | 
						
							| 19 | 18 | uniexd |  |-  ( ( ph /\ q e. ( Base ` Q ) ) -> U. ( F " q ) e. _V ) | 
						
							| 20 | 5 | a1i |  |-  ( ph -> J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) ) | 
						
							| 21 |  | simpr |  |-  ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) = ( F ` x ) ) | 
						
							| 22 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 23 | 22 9 | ghmf |  |-  ( F e. ( G GrpHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) | 
						
							| 24 | 2 23 | syl |  |-  ( ph -> F : ( Base ` G ) --> ( Base ` H ) ) | 
						
							| 25 | 24 | frnd |  |-  ( ph -> ran F C_ ( Base ` H ) ) | 
						
							| 26 | 25 | ad3antrrr |  |-  ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ran F C_ ( Base ` H ) ) | 
						
							| 27 | 24 | ffnd |  |-  ( ph -> F Fn ( Base ` G ) ) | 
						
							| 28 | 27 | ad3antrrr |  |-  ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F Fn ( Base ` G ) ) | 
						
							| 29 | 4 | a1i |  |-  ( ph -> Q = ( G /s ( G ~QG N ) ) ) | 
						
							| 30 |  | eqidd |  |-  ( ph -> ( Base ` G ) = ( Base ` G ) ) | 
						
							| 31 |  | ovexd |  |-  ( ph -> ( G ~QG N ) e. _V ) | 
						
							| 32 |  | ghmgrp1 |  |-  ( F e. ( G GrpHom H ) -> G e. Grp ) | 
						
							| 33 | 2 32 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 34 | 29 30 31 33 | qusbas |  |-  ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) ) | 
						
							| 35 |  | nsgsubg |  |-  ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) | 
						
							| 36 |  | eqid |  |-  ( G ~QG N ) = ( G ~QG N ) | 
						
							| 37 | 22 36 | eqger |  |-  ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er ( Base ` G ) ) | 
						
							| 38 | 7 35 37 | 3syl |  |-  ( ph -> ( G ~QG N ) Er ( Base ` G ) ) | 
						
							| 39 | 38 | qsss |  |-  ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) C_ ~P ( Base ` G ) ) | 
						
							| 40 | 34 39 | eqsstrrd |  |-  ( ph -> ( Base ` Q ) C_ ~P ( Base ` G ) ) | 
						
							| 41 | 40 | sselda |  |-  ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ~P ( Base ` G ) ) | 
						
							| 42 | 41 | elpwid |  |-  ( ( ph /\ r e. ( Base ` Q ) ) -> r C_ ( Base ` G ) ) | 
						
							| 43 | 42 | sselda |  |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) -> x e. ( Base ` G ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> x e. ( Base ` G ) ) | 
						
							| 45 | 28 44 | fnfvelrnd |  |-  ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` x ) e. ran F ) | 
						
							| 46 | 26 45 | sseldd |  |-  ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` x ) e. ( Base ` H ) ) | 
						
							| 47 | 21 46 | eqeltrd |  |-  ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) e. ( Base ` H ) ) | 
						
							| 48 | 2 | adantr |  |-  ( ( ph /\ r e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) | 
						
							| 49 | 6 | adantr |  |-  ( ( ph /\ r e. ( Base ` Q ) ) -> N C_ K ) | 
						
							| 50 | 7 | adantr |  |-  ( ( ph /\ r e. ( Base ` Q ) ) -> N e. ( NrmSGrp ` G ) ) | 
						
							| 51 |  | simpr |  |-  ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ( Base ` Q ) ) | 
						
							| 52 | 1 48 3 4 5 49 50 51 | ghmqusnsglem2 |  |-  ( ( ph /\ r e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) ) | 
						
							| 53 | 47 52 | r19.29a |  |-  ( ( ph /\ r e. ( Base ` Q ) ) -> ( J ` r ) e. ( Base ` H ) ) | 
						
							| 54 | 19 20 53 | fmpt2d |  |-  ( ph -> J : ( Base ` Q ) --> ( Base ` H ) ) | 
						
							| 55 | 38 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( G ~QG N ) Er ( Base ` G ) ) | 
						
							| 56 | 51 | ad5antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( Base ` Q ) ) | 
						
							| 57 | 34 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) ) | 
						
							| 58 | 56 57 | eleqtrrd |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( ( Base ` G ) /. ( G ~QG N ) ) ) | 
						
							| 59 |  | simp-4r |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. r ) | 
						
							| 60 |  | qsel |  |-  ( ( ( G ~QG N ) Er ( Base ` G ) /\ r e. ( ( Base ` G ) /. ( G ~QG N ) ) /\ x e. r ) -> r = [ x ] ( G ~QG N ) ) | 
						
							| 61 | 55 58 59 60 | syl3anc |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r = [ x ] ( G ~QG N ) ) | 
						
							| 62 |  | simp-5r |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( Base ` Q ) ) | 
						
							| 63 | 62 57 | eleqtrrd |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( ( Base ` G ) /. ( G ~QG N ) ) ) | 
						
							| 64 |  | simplr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. s ) | 
						
							| 65 |  | qsel |  |-  ( ( ( G ~QG N ) Er ( Base ` G ) /\ s e. ( ( Base ` G ) /. ( G ~QG N ) ) /\ y e. s ) -> s = [ y ] ( G ~QG N ) ) | 
						
							| 66 | 55 63 64 65 | syl3anc |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s = [ y ] ( G ~QG N ) ) | 
						
							| 67 | 61 66 | oveq12d |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( r ( +g ` Q ) s ) = ( [ x ] ( G ~QG N ) ( +g ` Q ) [ y ] ( G ~QG N ) ) ) | 
						
							| 68 | 7 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> N e. ( NrmSGrp ` G ) ) | 
						
							| 69 | 42 | ad5antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r C_ ( Base ` G ) ) | 
						
							| 70 | 69 59 | sseldd |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. ( Base ` G ) ) | 
						
							| 71 | 40 | sselda |  |-  ( ( ph /\ s e. ( Base ` Q ) ) -> s e. ~P ( Base ` G ) ) | 
						
							| 72 | 71 | elpwid |  |-  ( ( ph /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) ) | 
						
							| 73 | 72 | adantlr |  |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) ) | 
						
							| 74 | 73 | ad4antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s C_ ( Base ` G ) ) | 
						
							| 75 | 74 64 | sseldd |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. ( Base ` G ) ) | 
						
							| 76 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 77 | 4 22 76 10 | qusadd |  |-  ( ( N e. ( NrmSGrp ` G ) /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( [ x ] ( G ~QG N ) ( +g ` Q ) [ y ] ( G ~QG N ) ) = [ ( x ( +g ` G ) y ) ] ( G ~QG N ) ) | 
						
							| 78 | 68 70 75 77 | syl3anc |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( [ x ] ( G ~QG N ) ( +g ` Q ) [ y ] ( G ~QG N ) ) = [ ( x ( +g ` G ) y ) ] ( G ~QG N ) ) | 
						
							| 79 | 67 78 | eqtrd |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( r ( +g ` Q ) s ) = [ ( x ( +g ` G ) y ) ] ( G ~QG N ) ) | 
						
							| 80 | 79 | fveq2d |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( J ` [ ( x ( +g ` G ) y ) ] ( G ~QG N ) ) ) | 
						
							| 81 | 2 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> F e. ( G GrpHom H ) ) | 
						
							| 82 | 6 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> N C_ K ) | 
						
							| 83 | 81 32 | syl |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> G e. Grp ) | 
						
							| 84 | 22 76 83 70 75 | grpcld |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) | 
						
							| 85 | 1 81 3 4 5 82 68 84 | ghmqusnsglem1 |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` [ ( x ( +g ` G ) y ) ] ( G ~QG N ) ) = ( F ` ( x ( +g ` G ) y ) ) ) | 
						
							| 86 | 22 76 11 | ghmlin |  |-  ( ( F e. ( G GrpHom H ) /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( F ` ( x ( +g ` G ) y ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) | 
						
							| 87 | 81 70 75 86 | syl3anc |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( F ` ( x ( +g ` G ) y ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) | 
						
							| 88 | 80 85 87 | 3eqtrd |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) | 
						
							| 89 |  | simpllr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` r ) = ( F ` x ) ) | 
						
							| 90 |  | simpr |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` s ) = ( F ` y ) ) | 
						
							| 91 | 89 90 | oveq12d |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( J ` r ) ( +g ` H ) ( J ` s ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) | 
						
							| 92 | 88 91 | eqtr4d |  |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) | 
						
							| 93 | 2 | ad4antr |  |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F e. ( G GrpHom H ) ) | 
						
							| 94 | 6 | ad4antr |  |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> N C_ K ) | 
						
							| 95 | 7 | ad4antr |  |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> N e. ( NrmSGrp ` G ) ) | 
						
							| 96 |  | simpllr |  |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> s e. ( Base ` Q ) ) | 
						
							| 97 | 1 93 3 4 5 94 95 96 | ghmqusnsglem2 |  |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> E. y e. s ( J ` s ) = ( F ` y ) ) | 
						
							| 98 | 92 97 | r19.29a |  |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) | 
						
							| 99 | 52 | adantr |  |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) ) | 
						
							| 100 | 98 99 | r19.29a |  |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) | 
						
							| 101 | 100 | anasss |  |-  ( ( ph /\ ( r e. ( Base ` Q ) /\ s e. ( Base ` Q ) ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) | 
						
							| 102 | 8 9 10 11 13 16 54 101 | isghmd |  |-  ( ph -> J e. ( Q GrpHom H ) ) |