| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmqusnsg.0 | ⊢  0   =  ( 0g ‘ 𝐻 ) | 
						
							| 2 |  | ghmqusnsg.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 3 |  | ghmqusnsg.k | ⊢ 𝐾  =  ( ◡ 𝐹  “  {  0  } ) | 
						
							| 4 |  | ghmqusnsg.q | ⊢ 𝑄  =  ( 𝐺  /s  ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 5 |  | ghmqusnsg.j | ⊢ 𝐽  =  ( 𝑞  ∈  ( Base ‘ 𝑄 )  ↦  ∪  ( 𝐹  “  𝑞 ) ) | 
						
							| 6 |  | ghmqusnsg.n | ⊢ ( 𝜑  →  𝑁  ⊆  𝐾 ) | 
						
							| 7 |  | ghmqusnsg.1 | ⊢ ( 𝜑  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 10 |  | eqid | ⊢ ( +g ‘ 𝑄 )  =  ( +g ‘ 𝑄 ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 12 | 4 | qusgrp | ⊢ ( 𝑁  ∈  ( NrmSGrp ‘ 𝐺 )  →  𝑄  ∈  Grp ) | 
						
							| 13 | 7 12 | syl | ⊢ ( 𝜑  →  𝑄  ∈  Grp ) | 
						
							| 14 |  | ghmrn | ⊢ ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  →  ran  𝐹  ∈  ( SubGrp ‘ 𝐻 ) ) | 
						
							| 15 |  | subgrcl | ⊢ ( ran  𝐹  ∈  ( SubGrp ‘ 𝐻 )  →  𝐻  ∈  Grp ) | 
						
							| 16 | 2 14 15 | 3syl | ⊢ ( 𝜑  →  𝐻  ∈  Grp ) | 
						
							| 17 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑞  ∈  ( Base ‘ 𝑄 ) )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 18 | 17 | imaexd | ⊢ ( ( 𝜑  ∧  𝑞  ∈  ( Base ‘ 𝑄 ) )  →  ( 𝐹  “  𝑞 )  ∈  V ) | 
						
							| 19 | 18 | uniexd | ⊢ ( ( 𝜑  ∧  𝑞  ∈  ( Base ‘ 𝑄 ) )  →  ∪  ( 𝐹  “  𝑞 )  ∈  V ) | 
						
							| 20 | 5 | a1i | ⊢ ( 𝜑  →  𝐽  =  ( 𝑞  ∈  ( Base ‘ 𝑄 )  ↦  ∪  ( 𝐹  “  𝑞 ) ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 23 | 22 9 | ghmf | ⊢ ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  →  𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 24 | 2 23 | syl | ⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 25 | 24 | frnd | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ( Base ‘ 𝐻 ) ) | 
						
							| 26 | 25 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  ran  𝐹  ⊆  ( Base ‘ 𝐻 ) ) | 
						
							| 27 | 24 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ( Base ‘ 𝐺 ) ) | 
						
							| 28 | 27 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  𝐹  Fn  ( Base ‘ 𝐺 ) ) | 
						
							| 29 | 4 | a1i | ⊢ ( 𝜑  →  𝑄  =  ( 𝐺  /s  ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 30 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 31 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐺  ~QG  𝑁 )  ∈  V ) | 
						
							| 32 |  | ghmgrp1 | ⊢ ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  →  𝐺  ∈  Grp ) | 
						
							| 33 | 2 32 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 34 | 29 30 31 33 | qusbas | ⊢ ( 𝜑  →  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) )  =  ( Base ‘ 𝑄 ) ) | 
						
							| 35 |  | nsgsubg | ⊢ ( 𝑁  ∈  ( NrmSGrp ‘ 𝐺 )  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 36 |  | eqid | ⊢ ( 𝐺  ~QG  𝑁 )  =  ( 𝐺  ~QG  𝑁 ) | 
						
							| 37 | 22 36 | eqger | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 ) ) | 
						
							| 38 | 7 35 37 | 3syl | ⊢ ( 𝜑  →  ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 ) ) | 
						
							| 39 | 38 | qsss | ⊢ ( 𝜑  →  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) )  ⊆  𝒫  ( Base ‘ 𝐺 ) ) | 
						
							| 40 | 34 39 | eqsstrrd | ⊢ ( 𝜑  →  ( Base ‘ 𝑄 )  ⊆  𝒫  ( Base ‘ 𝐺 ) ) | 
						
							| 41 | 40 | sselda | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  →  𝑟  ∈  𝒫  ( Base ‘ 𝐺 ) ) | 
						
							| 42 | 41 | elpwid | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  →  𝑟  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 43 | 42 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  →  𝑥  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  𝑥  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 45 | 28 44 | fnfvelrnd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ran  𝐹 ) | 
						
							| 46 | 26 45 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 47 | 21 46 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝐽 ‘ 𝑟 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 48 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 49 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  →  𝑁  ⊆  𝐾 ) | 
						
							| 50 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 51 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  →  𝑟  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 52 | 1 48 3 4 5 49 50 51 | ghmqusnsglem2 | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  →  ∃ 𝑥  ∈  𝑟 ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 53 | 47 52 | r19.29a | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  →  ( 𝐽 ‘ 𝑟 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 54 | 19 20 53 | fmpt2d | ⊢ ( 𝜑  →  𝐽 : ( Base ‘ 𝑄 ) ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 55 | 38 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 ) ) | 
						
							| 56 | 51 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑟  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 57 | 34 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) )  =  ( Base ‘ 𝑄 ) ) | 
						
							| 58 | 56 57 | eleqtrrd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑟  ∈  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 59 |  | simp-4r | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑥  ∈  𝑟 ) | 
						
							| 60 |  | qsel | ⊢ ( ( ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 )  ∧  𝑟  ∈  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) )  ∧  𝑥  ∈  𝑟 )  →  𝑟  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 61 | 55 58 59 60 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑟  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 62 |  | simp-5r | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑠  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 63 | 62 57 | eleqtrrd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑠  ∈  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 64 |  | simplr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑦  ∈  𝑠 ) | 
						
							| 65 |  | qsel | ⊢ ( ( ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 )  ∧  𝑠  ∈  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) )  ∧  𝑦  ∈  𝑠 )  →  𝑠  =  [ 𝑦 ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 66 | 55 63 64 65 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑠  =  [ 𝑦 ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 67 | 61 66 | oveq12d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 )  =  ( [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 68 | 7 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 69 | 42 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑟  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 70 | 69 59 | sseldd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑥  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 71 | 40 | sselda | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  →  𝑠  ∈  𝒫  ( Base ‘ 𝐺 ) ) | 
						
							| 72 | 71 | elpwid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  →  𝑠  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 73 | 72 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  →  𝑠  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 74 | 73 | ad4antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑠  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 75 | 74 64 | sseldd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑦  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 76 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 77 | 4 22 76 10 | qusadd | ⊢ ( ( 𝑁  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  →  ( [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺  ~QG  𝑁 ) )  =  [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 78 | 68 70 75 77 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺  ~QG  𝑁 ) )  =  [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 79 | 67 78 | eqtrd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 )  =  [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 80 | 79 | fveq2d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐽 ‘ ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 ) )  =  ( 𝐽 ‘ [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 81 | 2 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 82 | 6 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑁  ⊆  𝐾 ) | 
						
							| 83 | 81 32 | syl | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝐺  ∈  Grp ) | 
						
							| 84 | 22 76 83 70 75 | grpcld | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 85 | 1 81 3 4 5 82 68 84 | ghmqusnsglem1 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐽 ‘ [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺  ~QG  𝑁 ) )  =  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) | 
						
							| 86 | 22 76 11 | ghmlin | ⊢ ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 87 | 81 70 75 86 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 88 | 80 85 87 | 3eqtrd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐽 ‘ ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 89 |  | simpllr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 90 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 91 | 89 90 | oveq12d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( ( 𝐽 ‘ 𝑟 ) ( +g ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 92 | 88 91 | eqtr4d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐽 ‘ ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 ) )  =  ( ( 𝐽 ‘ 𝑟 ) ( +g ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) | 
						
							| 93 | 2 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 94 | 6 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  𝑁  ⊆  𝐾 ) | 
						
							| 95 | 7 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 96 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  𝑠  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 97 | 1 93 3 4 5 94 95 96 | ghmqusnsglem2 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  ∃ 𝑦  ∈  𝑠 ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 98 | 92 97 | r19.29a | ⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝐽 ‘ ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 ) )  =  ( ( 𝐽 ‘ 𝑟 ) ( +g ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) | 
						
							| 99 | 52 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  →  ∃ 𝑥  ∈  𝑟 ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 100 | 98 99 | r19.29a | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  →  ( 𝐽 ‘ ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 ) )  =  ( ( 𝐽 ‘ 𝑟 ) ( +g ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) | 
						
							| 101 | 100 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ( Base ‘ 𝑄 )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) ) )  →  ( 𝐽 ‘ ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 ) )  =  ( ( 𝐽 ‘ 𝑟 ) ( +g ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) | 
						
							| 102 | 8 9 10 11 13 16 54 101 | isghmd | ⊢ ( 𝜑  →  𝐽  ∈  ( 𝑄  GrpHom  𝐻 ) ) |