| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmqusnsg.0 | ⊢  0   =  ( 0g ‘ 𝐻 ) | 
						
							| 2 |  | ghmqusnsg.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 3 |  | ghmqusnsg.k | ⊢ 𝐾  =  ( ◡ 𝐹  “  {  0  } ) | 
						
							| 4 |  | ghmqusnsg.q | ⊢ 𝑄  =  ( 𝐺  /s  ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 5 |  | ghmqusnsg.j | ⊢ 𝐽  =  ( 𝑞  ∈  ( Base ‘ 𝑄 )  ↦  ∪  ( 𝐹  “  𝑞 ) ) | 
						
							| 6 |  | ghmqusnsg.n | ⊢ ( 𝜑  →  𝑁  ⊆  𝐾 ) | 
						
							| 7 |  | ghmqusnsg.1 | ⊢ ( 𝜑  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 8 |  | ghmqusnsglem2.y | ⊢ ( 𝜑  →  𝑌  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 9 | 4 | a1i | ⊢ ( 𝜑  →  𝑄  =  ( 𝐺  /s  ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 10 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 11 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐺  ~QG  𝑁 )  ∈  V ) | 
						
							| 12 |  | ghmgrp1 | ⊢ ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  →  𝐺  ∈  Grp ) | 
						
							| 13 | 2 12 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 14 | 9 10 11 13 | qusbas | ⊢ ( 𝜑  →  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) )  =  ( Base ‘ 𝑄 ) ) | 
						
							| 15 | 8 14 | eleqtrrd | ⊢ ( 𝜑  →  𝑌  ∈  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 16 |  | elqsg | ⊢ ( 𝑌  ∈  ( Base ‘ 𝑄 )  →  ( 𝑌  ∈  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) )  ↔  ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) 𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 17 | 16 | biimpa | ⊢ ( ( 𝑌  ∈  ( Base ‘ 𝑄 )  ∧  𝑌  ∈  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) ) )  →  ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) 𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 18 | 8 15 17 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) 𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 19 |  | nsgsubg | ⊢ ( 𝑁  ∈  ( NrmSGrp ‘ 𝐺 )  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 21 |  | eqid | ⊢ ( 𝐺  ~QG  𝑁 )  =  ( 𝐺  ~QG  𝑁 ) | 
						
							| 22 | 20 21 | eqger | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 ) ) | 
						
							| 23 | 7 19 22 | 3syl | ⊢ ( 𝜑  →  ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 ) ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  →  ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 ) ) | 
						
							| 25 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  →  𝑥  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 26 |  | ecref | ⊢ ( ( ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 )  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  →  𝑥  ∈  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 27 | 24 25 26 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  →  𝑥  ∈  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 28 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  →  𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 29 | 27 28 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  →  𝑥  ∈  𝑌 ) | 
						
							| 30 | 28 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  →  ( 𝐽 ‘ 𝑌 )  =  ( 𝐽 ‘ [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 31 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 32 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  →  𝑁  ⊆  𝐾 ) | 
						
							| 33 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 34 | 1 31 3 4 5 32 33 25 | ghmqusnsglem1 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  →  ( 𝐽 ‘ [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 35 | 30 34 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  →  ( 𝐽 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 36 | 29 35 | jca | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  →  ( 𝑥  ∈  𝑌  ∧  ( 𝐽 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 37 | 36 | expl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  →  ( 𝑥  ∈  𝑌  ∧  ( 𝐽 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 38 | 37 | reximdv2 | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) 𝑌  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 )  →  ∃ 𝑥  ∈  𝑌 ( 𝐽 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 39 | 18 38 | mpd | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑌 ( 𝐽 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑥 ) ) |