| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmqusnsg.0 | ⊢  0   =  ( 0g ‘ 𝐻 ) | 
						
							| 2 |  | ghmqusnsg.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 3 |  | ghmqusnsg.k | ⊢ 𝐾  =  ( ◡ 𝐹  “  {  0  } ) | 
						
							| 4 |  | ghmqusnsg.q | ⊢ 𝑄  =  ( 𝐺  /s  ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 5 |  | ghmqusnsg.j | ⊢ 𝐽  =  ( 𝑞  ∈  ( Base ‘ 𝑄 )  ↦  ∪  ( 𝐹  “  𝑞 ) ) | 
						
							| 6 |  | ghmqusnsg.n | ⊢ ( 𝜑  →  𝑁  ⊆  𝐾 ) | 
						
							| 7 |  | ghmqusnsg.1 | ⊢ ( 𝜑  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 8 |  | ghmqusnsglem1.x | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 9 |  | imaeq2 | ⊢ ( 𝑞  =  [ 𝑋 ] ( 𝐺  ~QG  𝑁 )  →  ( 𝐹  “  𝑞 )  =  ( 𝐹  “  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 10 | 9 | unieqd | ⊢ ( 𝑞  =  [ 𝑋 ] ( 𝐺  ~QG  𝑁 )  →  ∪  ( 𝐹  “  𝑞 )  =  ∪  ( 𝐹  “  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 11 |  | ovex | ⊢ ( 𝐺  ~QG  𝑁 )  ∈  V | 
						
							| 12 | 11 | ecelqsi | ⊢ ( 𝑋  ∈  ( Base ‘ 𝐺 )  →  [ 𝑋 ] ( 𝐺  ~QG  𝑁 )  ∈  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 13 | 8 12 | syl | ⊢ ( 𝜑  →  [ 𝑋 ] ( 𝐺  ~QG  𝑁 )  ∈  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 14 | 4 | a1i | ⊢ ( 𝜑  →  𝑄  =  ( 𝐺  /s  ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 15 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 16 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐺  ~QG  𝑁 )  ∈  V ) | 
						
							| 17 |  | ghmgrp1 | ⊢ ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  →  𝐺  ∈  Grp ) | 
						
							| 18 | 2 17 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 19 | 14 15 16 18 | qusbas | ⊢ ( 𝜑  →  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) )  =  ( Base ‘ 𝑄 ) ) | 
						
							| 20 | 13 19 | eleqtrd | ⊢ ( 𝜑  →  [ 𝑋 ] ( 𝐺  ~QG  𝑁 )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 21 | 2 | imaexd | ⊢ ( 𝜑  →  ( 𝐹  “  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  ∈  V ) | 
						
							| 22 | 21 | uniexd | ⊢ ( 𝜑  →  ∪  ( 𝐹  “  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  ∈  V ) | 
						
							| 23 | 5 10 20 22 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐽 ‘ [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  =  ∪  ( 𝐹  “  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 26 | 24 25 | ghmf | ⊢ ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  →  𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 27 | 2 26 | syl | ⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 28 | 27 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ( Base ‘ 𝐺 ) ) | 
						
							| 29 |  | nsgsubg | ⊢ ( 𝑁  ∈  ( NrmSGrp ‘ 𝐺 )  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 30 |  | eqid | ⊢ ( 𝐺  ~QG  𝑁 )  =  ( 𝐺  ~QG  𝑁 ) | 
						
							| 31 | 24 30 | eqger | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 ) ) | 
						
							| 32 | 7 29 31 | 3syl | ⊢ ( 𝜑  →  ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 ) ) | 
						
							| 33 | 32 | ecss | ⊢ ( 𝜑  →  [ 𝑋 ] ( 𝐺  ~QG  𝑁 )  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 34 | 28 33 | fvelimabd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 𝐹  “  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  ↔  ∃ 𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 35 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 )  →  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) | 
						
							| 36 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 37 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 38 | 36 17 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  𝐺  ∈  Grp ) | 
						
							| 39 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  𝑋  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 40 | 24 37 38 39 | grpinvcld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 41 | 33 | sselda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  𝑧  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 42 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 43 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 44 | 24 42 43 | ghmlin | ⊢ ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝐺 )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) )  =  ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 45 | 36 40 41 44 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) )  =  ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 46 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  𝐹  Fn  ( Base ‘ 𝐺 ) ) | 
						
							| 47 | 6 3 | sseqtrdi | ⊢ ( 𝜑  →  𝑁  ⊆  ( ◡ 𝐹  “  {  0  } ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  𝑁  ⊆  ( ◡ 𝐹  “  {  0  } ) ) | 
						
							| 49 | 24 | subgss | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  𝑁  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 50 | 7 29 49 | 3syl | ⊢ ( 𝜑  →  𝑁  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  𝑁  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 52 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 53 |  | elecg | ⊢ ( ( 𝑧  ∈  V  ∧  𝑋  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 )  ↔  𝑋 ( 𝐺  ~QG  𝑁 ) 𝑧 ) ) | 
						
							| 54 | 52 53 | mpan | ⊢ ( 𝑋  ∈  ( Base ‘ 𝐺 )  →  ( 𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 )  ↔  𝑋 ( 𝐺  ~QG  𝑁 ) 𝑧 ) ) | 
						
							| 55 | 54 | biimpa | ⊢ ( ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  𝑋 ( 𝐺  ~QG  𝑁 ) 𝑧 ) | 
						
							| 56 | 8 55 | sylan | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  𝑋 ( 𝐺  ~QG  𝑁 ) 𝑧 ) | 
						
							| 57 | 24 37 42 30 | eqgval | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ⊆  ( Base ‘ 𝐺 ) )  →  ( 𝑋 ( 𝐺  ~QG  𝑁 ) 𝑧  ↔  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  𝑧  ∈  ( Base ‘ 𝐺 )  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑁 ) ) ) | 
						
							| 58 | 57 | biimpa | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ⊆  ( Base ‘ 𝐺 ) )  ∧  𝑋 ( 𝐺  ~QG  𝑁 ) 𝑧 )  →  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  𝑧  ∈  ( Base ‘ 𝐺 )  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑁 ) ) | 
						
							| 59 | 58 | simp3d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ⊆  ( Base ‘ 𝐺 ) )  ∧  𝑋 ( 𝐺  ~QG  𝑁 ) 𝑧 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑁 ) | 
						
							| 60 | 38 51 56 59 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑁 ) | 
						
							| 61 | 48 60 | sseldd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  ( ◡ 𝐹  “  {  0  } ) ) | 
						
							| 62 |  | fniniseg | ⊢ ( 𝐹  Fn  ( Base ‘ 𝐺 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  ( ◡ 𝐹  “  {  0  } )  ↔  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  ( Base ‘ 𝐺 )  ∧  ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) )  =   0  ) ) ) | 
						
							| 63 | 62 | biimpa | ⊢ ( ( 𝐹  Fn  ( Base ‘ 𝐺 )  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  ( ◡ 𝐹  “  {  0  } ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  ( Base ‘ 𝐺 )  ∧  ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) )  =   0  ) ) | 
						
							| 64 | 46 61 63 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  ( Base ‘ 𝐺 )  ∧  ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) )  =   0  ) ) | 
						
							| 65 | 64 | simprd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) )  =   0  ) | 
						
							| 66 | 45 65 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) )  =   0  ) | 
						
							| 67 | 66 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) )  =  ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 )  0  ) ) | 
						
							| 68 |  | eqid | ⊢ ( invg ‘ 𝐻 )  =  ( invg ‘ 𝐻 ) | 
						
							| 69 | 24 37 68 | ghminv | ⊢ ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑋  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  =  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 70 | 36 39 69 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  =  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 71 | 70 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 72 | 71 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) )  =  ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 73 |  | ghmgrp2 | ⊢ ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  →  𝐻  ∈  Grp ) | 
						
							| 74 | 36 73 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  𝐻  ∈  Grp ) | 
						
							| 75 | 36 26 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 76 | 75 39 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 77 | 75 41 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 78 | 25 43 68 | grpasscan1 | ⊢ ( ( 𝐻  ∈  Grp  ∧  ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝐻 )  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ( Base ‘ 𝐻 ) )  →  ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 79 | 74 76 77 78 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 80 | 72 79 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 81 | 25 43 1 74 76 | grpridd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 )  0  )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 82 | 67 80 81 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 84 | 35 83 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 )  →  𝑦  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 85 | 84 | r19.29an | ⊢ ( ( 𝜑  ∧  ∃ 𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) ( 𝐹 ‘ 𝑧 )  =  𝑦 )  →  𝑦  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 86 |  | fveqeq2 | ⊢ ( 𝑧  =  𝑋  →  ( ( 𝐹 ‘ 𝑧 )  =  𝑦  ↔  ( 𝐹 ‘ 𝑋 )  =  𝑦 ) ) | 
						
							| 87 |  | ecref | ⊢ ( ( ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 )  ∧  𝑋  ∈  ( Base ‘ 𝐺 ) )  →  𝑋  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 88 | 32 8 87 | syl2anc | ⊢ ( 𝜑  →  𝑋  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝐹 ‘ 𝑋 ) )  →  𝑋  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 90 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝐹 ‘ 𝑋 ) )  →  𝑦  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 91 | 90 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝐹 ‘ 𝑋 ) )  →  ( 𝐹 ‘ 𝑋 )  =  𝑦 ) | 
						
							| 92 | 86 89 91 | rspcedvdw | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝐹 ‘ 𝑋 ) )  →  ∃ 𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) ( 𝐹 ‘ 𝑧 )  =  𝑦 ) | 
						
							| 93 | 85 92 | impbida | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) ( 𝐹 ‘ 𝑧 )  =  𝑦  ↔  𝑦  =  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 94 |  | velsn | ⊢ ( 𝑦  ∈  { ( 𝐹 ‘ 𝑋 ) }  ↔  𝑦  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 95 | 93 94 | bitr4di | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) ( 𝐹 ‘ 𝑧 )  =  𝑦  ↔  𝑦  ∈  { ( 𝐹 ‘ 𝑋 ) } ) ) | 
						
							| 96 | 34 95 | bitrd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 𝐹  “  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  ↔  𝑦  ∈  { ( 𝐹 ‘ 𝑋 ) } ) ) | 
						
							| 97 | 96 | eqrdv | ⊢ ( 𝜑  →  ( 𝐹  “  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  =  { ( 𝐹 ‘ 𝑋 ) } ) | 
						
							| 98 | 97 | unieqd | ⊢ ( 𝜑  →  ∪  ( 𝐹  “  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  =  ∪  { ( 𝐹 ‘ 𝑋 ) } ) | 
						
							| 99 |  | fvex | ⊢ ( 𝐹 ‘ 𝑋 )  ∈  V | 
						
							| 100 | 99 | unisn | ⊢ ∪  { ( 𝐹 ‘ 𝑋 ) }  =  ( 𝐹 ‘ 𝑋 ) | 
						
							| 101 | 98 100 | eqtrdi | ⊢ ( 𝜑  →  ∪  ( 𝐹  “  [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 102 | 23 101 | eqtrd | ⊢ ( 𝜑  →  ( 𝐽 ‘ [ 𝑋 ] ( 𝐺  ~QG  𝑁 ) )  =  ( 𝐹 ‘ 𝑋 ) ) |