| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmqusnsg.0 |  | 
						
							| 2 |  | ghmqusnsg.f |  | 
						
							| 3 |  | ghmqusnsg.k |  | 
						
							| 4 |  | ghmqusnsg.q |  | 
						
							| 5 |  | ghmqusnsg.j |  | 
						
							| 6 |  | ghmqusnsg.n |  | 
						
							| 7 |  | ghmqusnsg.1 |  | 
						
							| 8 |  | ghmqusnsglem1.x |  | 
						
							| 9 |  | imaeq2 |  | 
						
							| 10 | 9 | unieqd |  | 
						
							| 11 |  | ovex |  | 
						
							| 12 | 11 | ecelqsi |  | 
						
							| 13 | 8 12 | syl |  | 
						
							| 14 | 4 | a1i |  | 
						
							| 15 |  | eqidd |  | 
						
							| 16 |  | ovexd |  | 
						
							| 17 |  | ghmgrp1 |  | 
						
							| 18 | 2 17 | syl |  | 
						
							| 19 | 14 15 16 18 | qusbas |  | 
						
							| 20 | 13 19 | eleqtrd |  | 
						
							| 21 | 2 | imaexd |  | 
						
							| 22 | 21 | uniexd |  | 
						
							| 23 | 5 10 20 22 | fvmptd3 |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 24 25 | ghmf |  | 
						
							| 27 | 2 26 | syl |  | 
						
							| 28 | 27 | ffnd |  | 
						
							| 29 |  | nsgsubg |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 24 30 | eqger |  | 
						
							| 32 | 7 29 31 | 3syl |  | 
						
							| 33 | 32 | ecss |  | 
						
							| 34 | 28 33 | fvelimabd |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 | 2 | adantr |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 | 36 17 | syl |  | 
						
							| 39 | 8 | adantr |  | 
						
							| 40 | 24 37 38 39 | grpinvcld |  | 
						
							| 41 | 33 | sselda |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 | 24 42 43 | ghmlin |  | 
						
							| 45 | 36 40 41 44 | syl3anc |  | 
						
							| 46 | 28 | adantr |  | 
						
							| 47 | 6 3 | sseqtrdi |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 | 24 | subgss |  | 
						
							| 50 | 7 29 49 | 3syl |  | 
						
							| 51 | 50 | adantr |  | 
						
							| 52 |  | vex |  | 
						
							| 53 |  | elecg |  | 
						
							| 54 | 52 53 | mpan |  | 
						
							| 55 | 54 | biimpa |  | 
						
							| 56 | 8 55 | sylan |  | 
						
							| 57 | 24 37 42 30 | eqgval |  | 
						
							| 58 | 57 | biimpa |  | 
						
							| 59 | 58 | simp3d |  | 
						
							| 60 | 38 51 56 59 | syl21anc |  | 
						
							| 61 | 48 60 | sseldd |  | 
						
							| 62 |  | fniniseg |  | 
						
							| 63 | 62 | biimpa |  | 
						
							| 64 | 46 61 63 | syl2anc |  | 
						
							| 65 | 64 | simprd |  | 
						
							| 66 | 45 65 | eqtr3d |  | 
						
							| 67 | 66 | oveq2d |  | 
						
							| 68 |  | eqid |  | 
						
							| 69 | 24 37 68 | ghminv |  | 
						
							| 70 | 36 39 69 | syl2anc |  | 
						
							| 71 | 70 | oveq1d |  | 
						
							| 72 | 71 | oveq2d |  | 
						
							| 73 |  | ghmgrp2 |  | 
						
							| 74 | 36 73 | syl |  | 
						
							| 75 | 36 26 | syl |  | 
						
							| 76 | 75 39 | ffvelcdmd |  | 
						
							| 77 | 75 41 | ffvelcdmd |  | 
						
							| 78 | 25 43 68 | grpasscan1 |  | 
						
							| 79 | 74 76 77 78 | syl3anc |  | 
						
							| 80 | 72 79 | eqtrd |  | 
						
							| 81 | 25 43 1 74 76 | grpridd |  | 
						
							| 82 | 67 80 81 | 3eqtr3d |  | 
						
							| 83 | 82 | adantr |  | 
						
							| 84 | 35 83 | eqtr3d |  | 
						
							| 85 | 84 | r19.29an |  | 
						
							| 86 |  | fveqeq2 |  | 
						
							| 87 |  | ecref |  | 
						
							| 88 | 32 8 87 | syl2anc |  | 
						
							| 89 | 88 | adantr |  | 
						
							| 90 |  | simpr |  | 
						
							| 91 | 90 | eqcomd |  | 
						
							| 92 | 86 89 91 | rspcedvdw |  | 
						
							| 93 | 85 92 | impbida |  | 
						
							| 94 |  | velsn |  | 
						
							| 95 | 93 94 | bitr4di |  | 
						
							| 96 | 34 95 | bitrd |  | 
						
							| 97 | 96 | eqrdv |  | 
						
							| 98 | 97 | unieqd |  | 
						
							| 99 |  | fvex |  | 
						
							| 100 | 99 | unisn |  | 
						
							| 101 | 98 100 | eqtrdi |  | 
						
							| 102 | 23 101 | eqtrd |  |