| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmqusnsg.0 |  |-  .0. = ( 0g ` H ) | 
						
							| 2 |  | ghmqusnsg.f |  |-  ( ph -> F e. ( G GrpHom H ) ) | 
						
							| 3 |  | ghmqusnsg.k |  |-  K = ( `' F " { .0. } ) | 
						
							| 4 |  | ghmqusnsg.q |  |-  Q = ( G /s ( G ~QG N ) ) | 
						
							| 5 |  | ghmqusnsg.j |  |-  J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) | 
						
							| 6 |  | ghmqusnsg.n |  |-  ( ph -> N C_ K ) | 
						
							| 7 |  | ghmqusnsg.1 |  |-  ( ph -> N e. ( NrmSGrp ` G ) ) | 
						
							| 8 |  | ghmqusnsglem1.x |  |-  ( ph -> X e. ( Base ` G ) ) | 
						
							| 9 |  | imaeq2 |  |-  ( q = [ X ] ( G ~QG N ) -> ( F " q ) = ( F " [ X ] ( G ~QG N ) ) ) | 
						
							| 10 | 9 | unieqd |  |-  ( q = [ X ] ( G ~QG N ) -> U. ( F " q ) = U. ( F " [ X ] ( G ~QG N ) ) ) | 
						
							| 11 |  | ovex |  |-  ( G ~QG N ) e. _V | 
						
							| 12 | 11 | ecelqsi |  |-  ( X e. ( Base ` G ) -> [ X ] ( G ~QG N ) e. ( ( Base ` G ) /. ( G ~QG N ) ) ) | 
						
							| 13 | 8 12 | syl |  |-  ( ph -> [ X ] ( G ~QG N ) e. ( ( Base ` G ) /. ( G ~QG N ) ) ) | 
						
							| 14 | 4 | a1i |  |-  ( ph -> Q = ( G /s ( G ~QG N ) ) ) | 
						
							| 15 |  | eqidd |  |-  ( ph -> ( Base ` G ) = ( Base ` G ) ) | 
						
							| 16 |  | ovexd |  |-  ( ph -> ( G ~QG N ) e. _V ) | 
						
							| 17 |  | ghmgrp1 |  |-  ( F e. ( G GrpHom H ) -> G e. Grp ) | 
						
							| 18 | 2 17 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 19 | 14 15 16 18 | qusbas |  |-  ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) ) | 
						
							| 20 | 13 19 | eleqtrd |  |-  ( ph -> [ X ] ( G ~QG N ) e. ( Base ` Q ) ) | 
						
							| 21 | 2 | imaexd |  |-  ( ph -> ( F " [ X ] ( G ~QG N ) ) e. _V ) | 
						
							| 22 | 21 | uniexd |  |-  ( ph -> U. ( F " [ X ] ( G ~QG N ) ) e. _V ) | 
						
							| 23 | 5 10 20 22 | fvmptd3 |  |-  ( ph -> ( J ` [ X ] ( G ~QG N ) ) = U. ( F " [ X ] ( G ~QG N ) ) ) | 
						
							| 24 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 25 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 26 | 24 25 | ghmf |  |-  ( F e. ( G GrpHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) | 
						
							| 27 | 2 26 | syl |  |-  ( ph -> F : ( Base ` G ) --> ( Base ` H ) ) | 
						
							| 28 | 27 | ffnd |  |-  ( ph -> F Fn ( Base ` G ) ) | 
						
							| 29 |  | nsgsubg |  |-  ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) | 
						
							| 30 |  | eqid |  |-  ( G ~QG N ) = ( G ~QG N ) | 
						
							| 31 | 24 30 | eqger |  |-  ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er ( Base ` G ) ) | 
						
							| 32 | 7 29 31 | 3syl |  |-  ( ph -> ( G ~QG N ) Er ( Base ` G ) ) | 
						
							| 33 | 32 | ecss |  |-  ( ph -> [ X ] ( G ~QG N ) C_ ( Base ` G ) ) | 
						
							| 34 | 28 33 | fvelimabd |  |-  ( ph -> ( y e. ( F " [ X ] ( G ~QG N ) ) <-> E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y ) ) | 
						
							| 35 |  | simpr |  |-  ( ( ( ph /\ z e. [ X ] ( G ~QG N ) ) /\ ( F ` z ) = y ) -> ( F ` z ) = y ) | 
						
							| 36 | 2 | adantr |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> F e. ( G GrpHom H ) ) | 
						
							| 37 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 38 | 36 17 | syl |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> G e. Grp ) | 
						
							| 39 | 8 | adantr |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> X e. ( Base ` G ) ) | 
						
							| 40 | 24 37 38 39 | grpinvcld |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( invg ` G ) ` X ) e. ( Base ` G ) ) | 
						
							| 41 | 33 | sselda |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> z e. ( Base ` G ) ) | 
						
							| 42 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 43 |  | eqid |  |-  ( +g ` H ) = ( +g ` H ) | 
						
							| 44 | 24 42 43 | ghmlin |  |-  ( ( F e. ( G GrpHom H ) /\ ( ( invg ` G ) ` X ) e. ( Base ` G ) /\ z e. ( Base ` G ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) | 
						
							| 45 | 36 40 41 44 | syl3anc |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) | 
						
							| 46 | 28 | adantr |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> F Fn ( Base ` G ) ) | 
						
							| 47 | 6 3 | sseqtrdi |  |-  ( ph -> N C_ ( `' F " { .0. } ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> N C_ ( `' F " { .0. } ) ) | 
						
							| 49 | 24 | subgss |  |-  ( N e. ( SubGrp ` G ) -> N C_ ( Base ` G ) ) | 
						
							| 50 | 7 29 49 | 3syl |  |-  ( ph -> N C_ ( Base ` G ) ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> N C_ ( Base ` G ) ) | 
						
							| 52 |  | vex |  |-  z e. _V | 
						
							| 53 |  | elecg |  |-  ( ( z e. _V /\ X e. ( Base ` G ) ) -> ( z e. [ X ] ( G ~QG N ) <-> X ( G ~QG N ) z ) ) | 
						
							| 54 | 52 53 | mpan |  |-  ( X e. ( Base ` G ) -> ( z e. [ X ] ( G ~QG N ) <-> X ( G ~QG N ) z ) ) | 
						
							| 55 | 54 | biimpa |  |-  ( ( X e. ( Base ` G ) /\ z e. [ X ] ( G ~QG N ) ) -> X ( G ~QG N ) z ) | 
						
							| 56 | 8 55 | sylan |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> X ( G ~QG N ) z ) | 
						
							| 57 | 24 37 42 30 | eqgval |  |-  ( ( G e. Grp /\ N C_ ( Base ` G ) ) -> ( X ( G ~QG N ) z <-> ( X e. ( Base ` G ) /\ z e. ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. N ) ) ) | 
						
							| 58 | 57 | biimpa |  |-  ( ( ( G e. Grp /\ N C_ ( Base ` G ) ) /\ X ( G ~QG N ) z ) -> ( X e. ( Base ` G ) /\ z e. ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. N ) ) | 
						
							| 59 | 58 | simp3d |  |-  ( ( ( G e. Grp /\ N C_ ( Base ` G ) ) /\ X ( G ~QG N ) z ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. N ) | 
						
							| 60 | 38 51 56 59 | syl21anc |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. N ) | 
						
							| 61 | 48 60 | sseldd |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) ) | 
						
							| 62 |  | fniniseg |  |-  ( F Fn ( Base ` G ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) <-> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) ) | 
						
							| 63 | 62 | biimpa |  |-  ( ( F Fn ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) | 
						
							| 64 | 46 61 63 | syl2anc |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) | 
						
							| 65 | 64 | simprd |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) | 
						
							| 66 | 45 65 | eqtr3d |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) = .0. ) | 
						
							| 67 | 66 | oveq2d |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( ( F ` X ) ( +g ` H ) .0. ) ) | 
						
							| 68 |  | eqid |  |-  ( invg ` H ) = ( invg ` H ) | 
						
							| 69 | 24 37 68 | ghminv |  |-  ( ( F e. ( G GrpHom H ) /\ X e. ( Base ` G ) ) -> ( F ` ( ( invg ` G ) ` X ) ) = ( ( invg ` H ) ` ( F ` X ) ) ) | 
						
							| 70 | 36 39 69 | syl2anc |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` ( ( invg ` G ) ` X ) ) = ( ( invg ` H ) ` ( F ` X ) ) ) | 
						
							| 71 | 70 | oveq1d |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) = ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) | 
						
							| 72 | 71 | oveq2d |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) ) | 
						
							| 73 |  | ghmgrp2 |  |-  ( F e. ( G GrpHom H ) -> H e. Grp ) | 
						
							| 74 | 36 73 | syl |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> H e. Grp ) | 
						
							| 75 | 36 26 | syl |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> F : ( Base ` G ) --> ( Base ` H ) ) | 
						
							| 76 | 75 39 | ffvelcdmd |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` X ) e. ( Base ` H ) ) | 
						
							| 77 | 75 41 | ffvelcdmd |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` z ) e. ( Base ` H ) ) | 
						
							| 78 | 25 43 68 | grpasscan1 |  |-  ( ( H e. Grp /\ ( F ` X ) e. ( Base ` H ) /\ ( F ` z ) e. ( Base ` H ) ) -> ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) ) | 
						
							| 79 | 74 76 77 78 | syl3anc |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) ) | 
						
							| 80 | 72 79 | eqtrd |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) ) | 
						
							| 81 | 25 43 1 74 76 | grpridd |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) .0. ) = ( F ` X ) ) | 
						
							| 82 | 67 80 81 | 3eqtr3d |  |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` z ) = ( F ` X ) ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ( ph /\ z e. [ X ] ( G ~QG N ) ) /\ ( F ` z ) = y ) -> ( F ` z ) = ( F ` X ) ) | 
						
							| 84 | 35 83 | eqtr3d |  |-  ( ( ( ph /\ z e. [ X ] ( G ~QG N ) ) /\ ( F ` z ) = y ) -> y = ( F ` X ) ) | 
						
							| 85 | 84 | r19.29an |  |-  ( ( ph /\ E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y ) -> y = ( F ` X ) ) | 
						
							| 86 |  | fveqeq2 |  |-  ( z = X -> ( ( F ` z ) = y <-> ( F ` X ) = y ) ) | 
						
							| 87 |  | ecref |  |-  ( ( ( G ~QG N ) Er ( Base ` G ) /\ X e. ( Base ` G ) ) -> X e. [ X ] ( G ~QG N ) ) | 
						
							| 88 | 32 8 87 | syl2anc |  |-  ( ph -> X e. [ X ] ( G ~QG N ) ) | 
						
							| 89 | 88 | adantr |  |-  ( ( ph /\ y = ( F ` X ) ) -> X e. [ X ] ( G ~QG N ) ) | 
						
							| 90 |  | simpr |  |-  ( ( ph /\ y = ( F ` X ) ) -> y = ( F ` X ) ) | 
						
							| 91 | 90 | eqcomd |  |-  ( ( ph /\ y = ( F ` X ) ) -> ( F ` X ) = y ) | 
						
							| 92 | 86 89 91 | rspcedvdw |  |-  ( ( ph /\ y = ( F ` X ) ) -> E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y ) | 
						
							| 93 | 85 92 | impbida |  |-  ( ph -> ( E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y <-> y = ( F ` X ) ) ) | 
						
							| 94 |  | velsn |  |-  ( y e. { ( F ` X ) } <-> y = ( F ` X ) ) | 
						
							| 95 | 93 94 | bitr4di |  |-  ( ph -> ( E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y <-> y e. { ( F ` X ) } ) ) | 
						
							| 96 | 34 95 | bitrd |  |-  ( ph -> ( y e. ( F " [ X ] ( G ~QG N ) ) <-> y e. { ( F ` X ) } ) ) | 
						
							| 97 | 96 | eqrdv |  |-  ( ph -> ( F " [ X ] ( G ~QG N ) ) = { ( F ` X ) } ) | 
						
							| 98 | 97 | unieqd |  |-  ( ph -> U. ( F " [ X ] ( G ~QG N ) ) = U. { ( F ` X ) } ) | 
						
							| 99 |  | fvex |  |-  ( F ` X ) e. _V | 
						
							| 100 | 99 | unisn |  |-  U. { ( F ` X ) } = ( F ` X ) | 
						
							| 101 | 98 100 | eqtrdi |  |-  ( ph -> U. ( F " [ X ] ( G ~QG N ) ) = ( F ` X ) ) | 
						
							| 102 | 23 101 | eqtrd |  |-  ( ph -> ( J ` [ X ] ( G ~QG N ) ) = ( F ` X ) ) |