| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmqusnsg.0 |  |-  .0. = ( 0g ` H ) | 
						
							| 2 |  | ghmqusnsg.f |  |-  ( ph -> F e. ( G GrpHom H ) ) | 
						
							| 3 |  | ghmqusnsg.k |  |-  K = ( `' F " { .0. } ) | 
						
							| 4 |  | ghmqusnsg.q |  |-  Q = ( G /s ( G ~QG N ) ) | 
						
							| 5 |  | ghmqusnsg.j |  |-  J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) | 
						
							| 6 |  | ghmqusnsg.n |  |-  ( ph -> N C_ K ) | 
						
							| 7 |  | ghmqusnsg.1 |  |-  ( ph -> N e. ( NrmSGrp ` G ) ) | 
						
							| 8 |  | ghmqusnsglem2.y |  |-  ( ph -> Y e. ( Base ` Q ) ) | 
						
							| 9 | 4 | a1i |  |-  ( ph -> Q = ( G /s ( G ~QG N ) ) ) | 
						
							| 10 |  | eqidd |  |-  ( ph -> ( Base ` G ) = ( Base ` G ) ) | 
						
							| 11 |  | ovexd |  |-  ( ph -> ( G ~QG N ) e. _V ) | 
						
							| 12 |  | ghmgrp1 |  |-  ( F e. ( G GrpHom H ) -> G e. Grp ) | 
						
							| 13 | 2 12 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 14 | 9 10 11 13 | qusbas |  |-  ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) ) | 
						
							| 15 | 8 14 | eleqtrrd |  |-  ( ph -> Y e. ( ( Base ` G ) /. ( G ~QG N ) ) ) | 
						
							| 16 |  | elqsg |  |-  ( Y e. ( Base ` Q ) -> ( Y e. ( ( Base ` G ) /. ( G ~QG N ) ) <-> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) ) ) | 
						
							| 17 | 16 | biimpa |  |-  ( ( Y e. ( Base ` Q ) /\ Y e. ( ( Base ` G ) /. ( G ~QG N ) ) ) -> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) ) | 
						
							| 18 | 8 15 17 | syl2anc |  |-  ( ph -> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) ) | 
						
							| 19 |  | nsgsubg |  |-  ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) | 
						
							| 20 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 21 |  | eqid |  |-  ( G ~QG N ) = ( G ~QG N ) | 
						
							| 22 | 20 21 | eqger |  |-  ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er ( Base ` G ) ) | 
						
							| 23 | 7 19 22 | 3syl |  |-  ( ph -> ( G ~QG N ) Er ( Base ` G ) ) | 
						
							| 24 | 23 | ad2antrr |  |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( G ~QG N ) Er ( Base ` G ) ) | 
						
							| 25 |  | simplr |  |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> x e. ( Base ` G ) ) | 
						
							| 26 |  | ecref |  |-  ( ( ( G ~QG N ) Er ( Base ` G ) /\ x e. ( Base ` G ) ) -> x e. [ x ] ( G ~QG N ) ) | 
						
							| 27 | 24 25 26 | syl2anc |  |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> x e. [ x ] ( G ~QG N ) ) | 
						
							| 28 |  | simpr |  |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> Y = [ x ] ( G ~QG N ) ) | 
						
							| 29 | 27 28 | eleqtrrd |  |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> x e. Y ) | 
						
							| 30 | 28 | fveq2d |  |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( J ` Y ) = ( J ` [ x ] ( G ~QG N ) ) ) | 
						
							| 31 | 2 | ad2antrr |  |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> F e. ( G GrpHom H ) ) | 
						
							| 32 | 6 | ad2antrr |  |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> N C_ K ) | 
						
							| 33 | 7 | ad2antrr |  |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> N e. ( NrmSGrp ` G ) ) | 
						
							| 34 | 1 31 3 4 5 32 33 25 | ghmqusnsglem1 |  |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( J ` [ x ] ( G ~QG N ) ) = ( F ` x ) ) | 
						
							| 35 | 30 34 | eqtrd |  |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( J ` Y ) = ( F ` x ) ) | 
						
							| 36 | 29 35 | jca |  |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( x e. Y /\ ( J ` Y ) = ( F ` x ) ) ) | 
						
							| 37 | 36 | expl |  |-  ( ph -> ( ( x e. ( Base ` G ) /\ Y = [ x ] ( G ~QG N ) ) -> ( x e. Y /\ ( J ` Y ) = ( F ` x ) ) ) ) | 
						
							| 38 | 37 | reximdv2 |  |-  ( ph -> ( E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) -> E. x e. Y ( J ` Y ) = ( F ` x ) ) ) | 
						
							| 39 | 18 38 | mpd |  |-  ( ph -> E. x e. Y ( J ` Y ) = ( F ` x ) ) |