| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmqusnsg.0 |
|- .0. = ( 0g ` H ) |
| 2 |
|
ghmqusnsg.f |
|- ( ph -> F e. ( G GrpHom H ) ) |
| 3 |
|
ghmqusnsg.k |
|- K = ( `' F " { .0. } ) |
| 4 |
|
ghmqusnsg.q |
|- Q = ( G /s ( G ~QG N ) ) |
| 5 |
|
ghmqusnsg.j |
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
| 6 |
|
ghmqusnsg.n |
|- ( ph -> N C_ K ) |
| 7 |
|
ghmqusnsg.1 |
|- ( ph -> N e. ( NrmSGrp ` G ) ) |
| 8 |
|
ghmqusnsglem2.y |
|- ( ph -> Y e. ( Base ` Q ) ) |
| 9 |
4
|
a1i |
|- ( ph -> Q = ( G /s ( G ~QG N ) ) ) |
| 10 |
|
eqidd |
|- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
| 11 |
|
ovexd |
|- ( ph -> ( G ~QG N ) e. _V ) |
| 12 |
|
ghmgrp1 |
|- ( F e. ( G GrpHom H ) -> G e. Grp ) |
| 13 |
2 12
|
syl |
|- ( ph -> G e. Grp ) |
| 14 |
9 10 11 13
|
qusbas |
|- ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) ) |
| 15 |
8 14
|
eleqtrrd |
|- ( ph -> Y e. ( ( Base ` G ) /. ( G ~QG N ) ) ) |
| 16 |
|
elqsg |
|- ( Y e. ( Base ` Q ) -> ( Y e. ( ( Base ` G ) /. ( G ~QG N ) ) <-> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) ) ) |
| 17 |
16
|
biimpa |
|- ( ( Y e. ( Base ` Q ) /\ Y e. ( ( Base ` G ) /. ( G ~QG N ) ) ) -> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) ) |
| 18 |
8 15 17
|
syl2anc |
|- ( ph -> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) ) |
| 19 |
|
nsgsubg |
|- ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) |
| 20 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 21 |
|
eqid |
|- ( G ~QG N ) = ( G ~QG N ) |
| 22 |
20 21
|
eqger |
|- ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er ( Base ` G ) ) |
| 23 |
7 19 22
|
3syl |
|- ( ph -> ( G ~QG N ) Er ( Base ` G ) ) |
| 24 |
23
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( G ~QG N ) Er ( Base ` G ) ) |
| 25 |
|
simplr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> x e. ( Base ` G ) ) |
| 26 |
|
ecref |
|- ( ( ( G ~QG N ) Er ( Base ` G ) /\ x e. ( Base ` G ) ) -> x e. [ x ] ( G ~QG N ) ) |
| 27 |
24 25 26
|
syl2anc |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> x e. [ x ] ( G ~QG N ) ) |
| 28 |
|
simpr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> Y = [ x ] ( G ~QG N ) ) |
| 29 |
27 28
|
eleqtrrd |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> x e. Y ) |
| 30 |
28
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( J ` Y ) = ( J ` [ x ] ( G ~QG N ) ) ) |
| 31 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> F e. ( G GrpHom H ) ) |
| 32 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> N C_ K ) |
| 33 |
7
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> N e. ( NrmSGrp ` G ) ) |
| 34 |
1 31 3 4 5 32 33 25
|
ghmqusnsglem1 |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( J ` [ x ] ( G ~QG N ) ) = ( F ` x ) ) |
| 35 |
30 34
|
eqtrd |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( J ` Y ) = ( F ` x ) ) |
| 36 |
29 35
|
jca |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( x e. Y /\ ( J ` Y ) = ( F ` x ) ) ) |
| 37 |
36
|
expl |
|- ( ph -> ( ( x e. ( Base ` G ) /\ Y = [ x ] ( G ~QG N ) ) -> ( x e. Y /\ ( J ` Y ) = ( F ` x ) ) ) ) |
| 38 |
37
|
reximdv2 |
|- ( ph -> ( E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) -> E. x e. Y ( J ` Y ) = ( F ` x ) ) ) |
| 39 |
18 38
|
mpd |
|- ( ph -> E. x e. Y ( J ` Y ) = ( F ` x ) ) |