| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmzrhval.1 |
|- ( ph -> F e. ( R RingHom S ) ) |
| 2 |
|
rhmzrhval.2 |
|- ( ph -> X e. ZZ ) |
| 3 |
|
rhmzrhval.3 |
|- M = ( ZRHom ` R ) |
| 4 |
|
rhmzrhval.4 |
|- N = ( ZRHom ` S ) |
| 5 |
|
rhmrcl1 |
|- ( F e. ( R RingHom S ) -> R e. Ring ) |
| 6 |
1 5
|
syl |
|- ( ph -> R e. Ring ) |
| 7 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
| 8 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 9 |
3 7 8
|
zrhval2 |
|- ( R e. Ring -> M = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ) |
| 10 |
6 9
|
syl |
|- ( ph -> M = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ) |
| 11 |
10
|
fveq1d |
|- ( ph -> ( M ` X ) = ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) |
| 12 |
11
|
fveq2d |
|- ( ph -> ( F ` ( M ` X ) ) = ( F ` ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) ) |
| 13 |
|
eqidd |
|- ( ph -> ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ) |
| 14 |
|
oveq1 |
|- ( x = X -> ( x ( .g ` R ) ( 1r ` R ) ) = ( X ( .g ` R ) ( 1r ` R ) ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ x = X ) -> ( x ( .g ` R ) ( 1r ` R ) ) = ( X ( .g ` R ) ( 1r ` R ) ) ) |
| 16 |
|
ovexd |
|- ( ph -> ( X ( .g ` R ) ( 1r ` R ) ) e. _V ) |
| 17 |
13 15 2 16
|
fvmptd |
|- ( ph -> ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) = ( X ( .g ` R ) ( 1r ` R ) ) ) |
| 18 |
17
|
fveq2d |
|- ( ph -> ( F ` ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) = ( F ` ( X ( .g ` R ) ( 1r ` R ) ) ) ) |
| 19 |
|
rhmghm |
|- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
| 20 |
1 19
|
syl |
|- ( ph -> F e. ( R GrpHom S ) ) |
| 21 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 22 |
21 8
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 23 |
6 22
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 24 |
|
eqid |
|- ( .g ` S ) = ( .g ` S ) |
| 25 |
21 7 24
|
ghmmulg |
|- ( ( F e. ( R GrpHom S ) /\ X e. ZZ /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( F ` ( X ( .g ` R ) ( 1r ` R ) ) ) = ( X ( .g ` S ) ( F ` ( 1r ` R ) ) ) ) |
| 26 |
20 2 23 25
|
syl3anc |
|- ( ph -> ( F ` ( X ( .g ` R ) ( 1r ` R ) ) ) = ( X ( .g ` S ) ( F ` ( 1r ` R ) ) ) ) |
| 27 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 28 |
8 27
|
rhm1 |
|- ( F e. ( R RingHom S ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 29 |
1 28
|
syl |
|- ( ph -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 30 |
29
|
oveq2d |
|- ( ph -> ( X ( .g ` S ) ( F ` ( 1r ` R ) ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) |
| 31 |
26 30
|
eqtrd |
|- ( ph -> ( F ` ( X ( .g ` R ) ( 1r ` R ) ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) |
| 32 |
18 31
|
eqtrd |
|- ( ph -> ( F ` ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) |
| 33 |
|
eqidd |
|- ( ph -> ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) = ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ) |
| 34 |
|
oveq1 |
|- ( x = X -> ( x ( .g ` S ) ( 1r ` S ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) |
| 35 |
34
|
adantl |
|- ( ( ph /\ x = X ) -> ( x ( .g ` S ) ( 1r ` S ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) |
| 36 |
|
ovexd |
|- ( ph -> ( X ( .g ` S ) ( 1r ` S ) ) e. _V ) |
| 37 |
33 35 2 36
|
fvmptd |
|- ( ph -> ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) = ( X ( .g ` S ) ( 1r ` S ) ) ) |
| 38 |
37
|
eqcomd |
|- ( ph -> ( X ( .g ` S ) ( 1r ` S ) ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) |
| 39 |
32 38
|
eqtrd |
|- ( ph -> ( F ` ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) |
| 40 |
12 39
|
eqtrd |
|- ( ph -> ( F ` ( M ` X ) ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) |
| 41 |
|
rhmrcl2 |
|- ( F e. ( R RingHom S ) -> S e. Ring ) |
| 42 |
1 41
|
syl |
|- ( ph -> S e. Ring ) |
| 43 |
4 24 27
|
zrhval2 |
|- ( S e. Ring -> N = ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ) |
| 44 |
43
|
fveq1d |
|- ( S e. Ring -> ( N ` X ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) |
| 45 |
42 44
|
syl |
|- ( ph -> ( N ` X ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) |
| 46 |
45
|
eqcomd |
|- ( ph -> ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) = ( N ` X ) ) |
| 47 |
40 46
|
eqtrd |
|- ( ph -> ( F ` ( M ` X ) ) = ( N ` X ) ) |