| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmzrhval.1 |  |-  ( ph -> F e. ( R RingHom S ) ) | 
						
							| 2 |  | rhmzrhval.2 |  |-  ( ph -> X e. ZZ ) | 
						
							| 3 |  | rhmzrhval.3 |  |-  M = ( ZRHom ` R ) | 
						
							| 4 |  | rhmzrhval.4 |  |-  N = ( ZRHom ` S ) | 
						
							| 5 |  | rhmrcl1 |  |-  ( F e. ( R RingHom S ) -> R e. Ring ) | 
						
							| 6 | 1 5 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 7 |  | eqid |  |-  ( .g ` R ) = ( .g ` R ) | 
						
							| 8 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 9 | 3 7 8 | zrhval2 |  |-  ( R e. Ring -> M = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ) | 
						
							| 10 | 6 9 | syl |  |-  ( ph -> M = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ) | 
						
							| 11 | 10 | fveq1d |  |-  ( ph -> ( M ` X ) = ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ph -> ( F ` ( M ` X ) ) = ( F ` ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) ) | 
						
							| 13 |  | eqidd |  |-  ( ph -> ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ) | 
						
							| 14 |  | oveq1 |  |-  ( x = X -> ( x ( .g ` R ) ( 1r ` R ) ) = ( X ( .g ` R ) ( 1r ` R ) ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ph /\ x = X ) -> ( x ( .g ` R ) ( 1r ` R ) ) = ( X ( .g ` R ) ( 1r ` R ) ) ) | 
						
							| 16 |  | ovexd |  |-  ( ph -> ( X ( .g ` R ) ( 1r ` R ) ) e. _V ) | 
						
							| 17 | 13 15 2 16 | fvmptd |  |-  ( ph -> ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) = ( X ( .g ` R ) ( 1r ` R ) ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ph -> ( F ` ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) = ( F ` ( X ( .g ` R ) ( 1r ` R ) ) ) ) | 
						
							| 19 |  | rhmghm |  |-  ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) | 
						
							| 20 | 1 19 | syl |  |-  ( ph -> F e. ( R GrpHom S ) ) | 
						
							| 21 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 22 | 21 8 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 23 | 6 22 | syl |  |-  ( ph -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 24 |  | eqid |  |-  ( .g ` S ) = ( .g ` S ) | 
						
							| 25 | 21 7 24 | ghmmulg |  |-  ( ( F e. ( R GrpHom S ) /\ X e. ZZ /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( F ` ( X ( .g ` R ) ( 1r ` R ) ) ) = ( X ( .g ` S ) ( F ` ( 1r ` R ) ) ) ) | 
						
							| 26 | 20 2 23 25 | syl3anc |  |-  ( ph -> ( F ` ( X ( .g ` R ) ( 1r ` R ) ) ) = ( X ( .g ` S ) ( F ` ( 1r ` R ) ) ) ) | 
						
							| 27 |  | eqid |  |-  ( 1r ` S ) = ( 1r ` S ) | 
						
							| 28 | 8 27 | rhm1 |  |-  ( F e. ( R RingHom S ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) | 
						
							| 29 | 1 28 | syl |  |-  ( ph -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( ph -> ( X ( .g ` S ) ( F ` ( 1r ` R ) ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) | 
						
							| 31 | 26 30 | eqtrd |  |-  ( ph -> ( F ` ( X ( .g ` R ) ( 1r ` R ) ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) | 
						
							| 32 | 18 31 | eqtrd |  |-  ( ph -> ( F ` ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) | 
						
							| 33 |  | eqidd |  |-  ( ph -> ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) = ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ) | 
						
							| 34 |  | oveq1 |  |-  ( x = X -> ( x ( .g ` S ) ( 1r ` S ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ph /\ x = X ) -> ( x ( .g ` S ) ( 1r ` S ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) | 
						
							| 36 |  | ovexd |  |-  ( ph -> ( X ( .g ` S ) ( 1r ` S ) ) e. _V ) | 
						
							| 37 | 33 35 2 36 | fvmptd |  |-  ( ph -> ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) = ( X ( .g ` S ) ( 1r ` S ) ) ) | 
						
							| 38 | 37 | eqcomd |  |-  ( ph -> ( X ( .g ` S ) ( 1r ` S ) ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) | 
						
							| 39 | 32 38 | eqtrd |  |-  ( ph -> ( F ` ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) | 
						
							| 40 | 12 39 | eqtrd |  |-  ( ph -> ( F ` ( M ` X ) ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) | 
						
							| 41 |  | rhmrcl2 |  |-  ( F e. ( R RingHom S ) -> S e. Ring ) | 
						
							| 42 | 1 41 | syl |  |-  ( ph -> S e. Ring ) | 
						
							| 43 | 4 24 27 | zrhval2 |  |-  ( S e. Ring -> N = ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ) | 
						
							| 44 | 43 | fveq1d |  |-  ( S e. Ring -> ( N ` X ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) | 
						
							| 45 | 42 44 | syl |  |-  ( ph -> ( N ` X ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) | 
						
							| 46 | 45 | eqcomd |  |-  ( ph -> ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) = ( N ` X ) ) | 
						
							| 47 | 40 46 | eqtrd |  |-  ( ph -> ( F ` ( M ` X ) ) = ( N ` X ) ) |