Step |
Hyp |
Ref |
Expression |
1 |
|
rhmzrhval.1 |
|- ( ph -> F e. ( R RingHom S ) ) |
2 |
|
rhmzrhval.2 |
|- ( ph -> X e. ZZ ) |
3 |
|
rhmzrhval.3 |
|- M = ( ZRHom ` R ) |
4 |
|
rhmzrhval.4 |
|- N = ( ZRHom ` S ) |
5 |
|
rhmrcl1 |
|- ( F e. ( R RingHom S ) -> R e. Ring ) |
6 |
1 5
|
syl |
|- ( ph -> R e. Ring ) |
7 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
8 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
9 |
3 7 8
|
zrhval2 |
|- ( R e. Ring -> M = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ) |
10 |
6 9
|
syl |
|- ( ph -> M = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ) |
11 |
10
|
fveq1d |
|- ( ph -> ( M ` X ) = ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) |
12 |
11
|
fveq2d |
|- ( ph -> ( F ` ( M ` X ) ) = ( F ` ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) ) |
13 |
|
eqidd |
|- ( ph -> ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ) |
14 |
|
oveq1 |
|- ( x = X -> ( x ( .g ` R ) ( 1r ` R ) ) = ( X ( .g ` R ) ( 1r ` R ) ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ x = X ) -> ( x ( .g ` R ) ( 1r ` R ) ) = ( X ( .g ` R ) ( 1r ` R ) ) ) |
16 |
|
ovexd |
|- ( ph -> ( X ( .g ` R ) ( 1r ` R ) ) e. _V ) |
17 |
13 15 2 16
|
fvmptd |
|- ( ph -> ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) = ( X ( .g ` R ) ( 1r ` R ) ) ) |
18 |
17
|
fveq2d |
|- ( ph -> ( F ` ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) = ( F ` ( X ( .g ` R ) ( 1r ` R ) ) ) ) |
19 |
|
rhmghm |
|- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
20 |
1 19
|
syl |
|- ( ph -> F e. ( R GrpHom S ) ) |
21 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
22 |
21 8
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
23 |
6 22
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
24 |
|
eqid |
|- ( .g ` S ) = ( .g ` S ) |
25 |
21 7 24
|
ghmmulg |
|- ( ( F e. ( R GrpHom S ) /\ X e. ZZ /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( F ` ( X ( .g ` R ) ( 1r ` R ) ) ) = ( X ( .g ` S ) ( F ` ( 1r ` R ) ) ) ) |
26 |
20 2 23 25
|
syl3anc |
|- ( ph -> ( F ` ( X ( .g ` R ) ( 1r ` R ) ) ) = ( X ( .g ` S ) ( F ` ( 1r ` R ) ) ) ) |
27 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
28 |
8 27
|
rhm1 |
|- ( F e. ( R RingHom S ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
29 |
1 28
|
syl |
|- ( ph -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
30 |
29
|
oveq2d |
|- ( ph -> ( X ( .g ` S ) ( F ` ( 1r ` R ) ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) |
31 |
26 30
|
eqtrd |
|- ( ph -> ( F ` ( X ( .g ` R ) ( 1r ` R ) ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) |
32 |
18 31
|
eqtrd |
|- ( ph -> ( F ` ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) |
33 |
|
eqidd |
|- ( ph -> ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) = ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ) |
34 |
|
oveq1 |
|- ( x = X -> ( x ( .g ` S ) ( 1r ` S ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) |
35 |
34
|
adantl |
|- ( ( ph /\ x = X ) -> ( x ( .g ` S ) ( 1r ` S ) ) = ( X ( .g ` S ) ( 1r ` S ) ) ) |
36 |
|
ovexd |
|- ( ph -> ( X ( .g ` S ) ( 1r ` S ) ) e. _V ) |
37 |
33 35 2 36
|
fvmptd |
|- ( ph -> ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) = ( X ( .g ` S ) ( 1r ` S ) ) ) |
38 |
37
|
eqcomd |
|- ( ph -> ( X ( .g ` S ) ( 1r ` S ) ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) |
39 |
32 38
|
eqtrd |
|- ( ph -> ( F ` ( ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ` X ) ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) |
40 |
12 39
|
eqtrd |
|- ( ph -> ( F ` ( M ` X ) ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) |
41 |
|
rhmrcl2 |
|- ( F e. ( R RingHom S ) -> S e. Ring ) |
42 |
1 41
|
syl |
|- ( ph -> S e. Ring ) |
43 |
4 24 27
|
zrhval2 |
|- ( S e. Ring -> N = ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ) |
44 |
43
|
fveq1d |
|- ( S e. Ring -> ( N ` X ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) |
45 |
42 44
|
syl |
|- ( ph -> ( N ` X ) = ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) ) |
46 |
45
|
eqcomd |
|- ( ph -> ( ( x e. ZZ |-> ( x ( .g ` S ) ( 1r ` S ) ) ) ` X ) = ( N ` X ) ) |
47 |
40 46
|
eqtrd |
|- ( ph -> ( F ` ( M ` X ) ) = ( N ` X ) ) |