| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmmulg.b |
|- B = ( Base ` G ) |
| 2 |
|
ghmmulg.s |
|- .x. = ( .g ` G ) |
| 3 |
|
ghmmulg.t |
|- .X. = ( .g ` H ) |
| 4 |
|
ghmmhm |
|- ( F e. ( G GrpHom H ) -> F e. ( G MndHom H ) ) |
| 5 |
1 2 3
|
mhmmulg |
|- ( ( F e. ( G MndHom H ) /\ N e. NN0 /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| 6 |
4 5
|
syl3an1 |
|- ( ( F e. ( G GrpHom H ) /\ N e. NN0 /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| 7 |
6
|
3expa |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. NN0 ) /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| 8 |
7
|
an32s |
|- ( ( ( F e. ( G GrpHom H ) /\ X e. B ) /\ N e. NN0 ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| 9 |
8
|
3adantl2 |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ N e. NN0 ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| 10 |
|
simpl1 |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> F e. ( G GrpHom H ) ) |
| 11 |
10 4
|
syl |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> F e. ( G MndHom H ) ) |
| 12 |
|
nnnn0 |
|- ( -u N e. NN -> -u N e. NN0 ) |
| 13 |
12
|
ad2antll |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN0 ) |
| 14 |
|
simpl3 |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> X e. B ) |
| 15 |
1 2 3
|
mhmmulg |
|- ( ( F e. ( G MndHom H ) /\ -u N e. NN0 /\ X e. B ) -> ( F ` ( -u N .x. X ) ) = ( -u N .X. ( F ` X ) ) ) |
| 16 |
11 13 14 15
|
syl3anc |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( -u N .x. X ) ) = ( -u N .X. ( F ` X ) ) ) |
| 17 |
16
|
fveq2d |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( invg ` H ) ` ( F ` ( -u N .x. X ) ) ) = ( ( invg ` H ) ` ( -u N .X. ( F ` X ) ) ) ) |
| 18 |
|
ghmgrp1 |
|- ( F e. ( G GrpHom H ) -> G e. Grp ) |
| 19 |
10 18
|
syl |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> G e. Grp ) |
| 20 |
|
nnz |
|- ( -u N e. NN -> -u N e. ZZ ) |
| 21 |
20
|
ad2antll |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. ZZ ) |
| 22 |
1 2
|
mulgcl |
|- ( ( G e. Grp /\ -u N e. ZZ /\ X e. B ) -> ( -u N .x. X ) e. B ) |
| 23 |
19 21 14 22
|
syl3anc |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u N .x. X ) e. B ) |
| 24 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 25 |
|
eqid |
|- ( invg ` H ) = ( invg ` H ) |
| 26 |
1 24 25
|
ghminv |
|- ( ( F e. ( G GrpHom H ) /\ ( -u N .x. X ) e. B ) -> ( F ` ( ( invg ` G ) ` ( -u N .x. X ) ) ) = ( ( invg ` H ) ` ( F ` ( -u N .x. X ) ) ) ) |
| 27 |
10 23 26
|
syl2anc |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( ( invg ` G ) ` ( -u N .x. X ) ) ) = ( ( invg ` H ) ` ( F ` ( -u N .x. X ) ) ) ) |
| 28 |
|
ghmgrp2 |
|- ( F e. ( G GrpHom H ) -> H e. Grp ) |
| 29 |
10 28
|
syl |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> H e. Grp ) |
| 30 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 31 |
1 30
|
ghmf |
|- ( F e. ( G GrpHom H ) -> F : B --> ( Base ` H ) ) |
| 32 |
10 31
|
syl |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> F : B --> ( Base ` H ) ) |
| 33 |
32 14
|
ffvelcdmd |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` X ) e. ( Base ` H ) ) |
| 34 |
30 3 25
|
mulgneg |
|- ( ( H e. Grp /\ -u N e. ZZ /\ ( F ` X ) e. ( Base ` H ) ) -> ( -u -u N .X. ( F ` X ) ) = ( ( invg ` H ) ` ( -u N .X. ( F ` X ) ) ) ) |
| 35 |
29 21 33 34
|
syl3anc |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .X. ( F ` X ) ) = ( ( invg ` H ) ` ( -u N .X. ( F ` X ) ) ) ) |
| 36 |
17 27 35
|
3eqtr4d |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( ( invg ` G ) ` ( -u N .x. X ) ) ) = ( -u -u N .X. ( F ` X ) ) ) |
| 37 |
1 2 24
|
mulgneg |
|- ( ( G e. Grp /\ -u N e. ZZ /\ X e. B ) -> ( -u -u N .x. X ) = ( ( invg ` G ) ` ( -u N .x. X ) ) ) |
| 38 |
19 21 14 37
|
syl3anc |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .x. X ) = ( ( invg ` G ) ` ( -u N .x. X ) ) ) |
| 39 |
|
simprl |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. RR ) |
| 40 |
39
|
recnd |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. CC ) |
| 41 |
40
|
negnegd |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u -u N = N ) |
| 42 |
41
|
oveq1d |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .x. X ) = ( N .x. X ) ) |
| 43 |
38 42
|
eqtr3d |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( invg ` G ) ` ( -u N .x. X ) ) = ( N .x. X ) ) |
| 44 |
43
|
fveq2d |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( ( invg ` G ) ` ( -u N .x. X ) ) ) = ( F ` ( N .x. X ) ) ) |
| 45 |
36 44
|
eqtr3d |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .X. ( F ` X ) ) = ( F ` ( N .x. X ) ) ) |
| 46 |
41
|
oveq1d |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .X. ( F ` X ) ) = ( N .X. ( F ` X ) ) ) |
| 47 |
45 46
|
eqtr3d |
|- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| 48 |
|
simp2 |
|- ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) -> N e. ZZ ) |
| 49 |
|
elznn0nn |
|- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 50 |
48 49
|
sylib |
|- ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) -> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 51 |
9 47 50
|
mpjaodan |
|- ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |