| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1asclzrhval.1 |  |-  W = ( Poly1 ` R ) | 
						
							| 2 |  | ply1asclzrhval.2 |  |-  A = ( algSc ` W ) | 
						
							| 3 |  | ply1asclzrhval.3 |  |-  B = ( ZRHom ` W ) | 
						
							| 4 |  | ply1asclzrhval.4 |  |-  C = ( ZRHom ` R ) | 
						
							| 5 |  | ply1asclzrhval.5 |  |-  ( ph -> R e. CRing ) | 
						
							| 6 |  | ply1asclzrhval.6 |  |-  ( ph -> X e. ZZ ) | 
						
							| 7 |  | eqid |  |-  ( Poly1 ` R ) = ( Poly1 ` R ) | 
						
							| 8 | 7 | ply1assa |  |-  ( R e. CRing -> ( Poly1 ` R ) e. AssAlg ) | 
						
							| 9 | 5 8 | syl |  |-  ( ph -> ( Poly1 ` R ) e. AssAlg ) | 
						
							| 10 | 1 9 | eqeltrid |  |-  ( ph -> W e. AssAlg ) | 
						
							| 11 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 12 | 2 11 | asclrhm |  |-  ( W e. AssAlg -> A e. ( ( Scalar ` W ) RingHom W ) ) | 
						
							| 13 | 10 12 | syl |  |-  ( ph -> A e. ( ( Scalar ` W ) RingHom W ) ) | 
						
							| 14 | 5 | crngringd |  |-  ( ph -> R e. Ring ) | 
						
							| 15 | 1 | ply1sca |  |-  ( R e. Ring -> R = ( Scalar ` W ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ph -> R = ( Scalar ` W ) ) | 
						
							| 17 | 16 | eqcomd |  |-  ( ph -> ( Scalar ` W ) = R ) | 
						
							| 18 | 17 | oveq1d |  |-  ( ph -> ( ( Scalar ` W ) RingHom W ) = ( R RingHom W ) ) | 
						
							| 19 | 13 18 | eleqtrd |  |-  ( ph -> A e. ( R RingHom W ) ) | 
						
							| 20 | 19 6 4 3 | rhmzrhval |  |-  ( ph -> ( A ` ( C ` X ) ) = ( B ` X ) ) |