Metamath Proof Explorer


Theorem ply1asclzrhval

Description: Transfer results from algebraic scalars and ZR ring homomorphisms. (Contributed by metakunt, 17-Jun-2025)

Ref Expression
Hypotheses ply1asclzrhval.1
|- W = ( Poly1 ` R )
ply1asclzrhval.2
|- A = ( algSc ` W )
ply1asclzrhval.3
|- B = ( ZRHom ` W )
ply1asclzrhval.4
|- C = ( ZRHom ` R )
ply1asclzrhval.5
|- ( ph -> R e. CRing )
ply1asclzrhval.6
|- ( ph -> X e. ZZ )
Assertion ply1asclzrhval
|- ( ph -> ( A ` ( C ` X ) ) = ( B ` X ) )

Proof

Step Hyp Ref Expression
1 ply1asclzrhval.1
 |-  W = ( Poly1 ` R )
2 ply1asclzrhval.2
 |-  A = ( algSc ` W )
3 ply1asclzrhval.3
 |-  B = ( ZRHom ` W )
4 ply1asclzrhval.4
 |-  C = ( ZRHom ` R )
5 ply1asclzrhval.5
 |-  ( ph -> R e. CRing )
6 ply1asclzrhval.6
 |-  ( ph -> X e. ZZ )
7 eqid
 |-  ( Poly1 ` R ) = ( Poly1 ` R )
8 7 ply1assa
 |-  ( R e. CRing -> ( Poly1 ` R ) e. AssAlg )
9 5 8 syl
 |-  ( ph -> ( Poly1 ` R ) e. AssAlg )
10 1 9 eqeltrid
 |-  ( ph -> W e. AssAlg )
11 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
12 2 11 asclrhm
 |-  ( W e. AssAlg -> A e. ( ( Scalar ` W ) RingHom W ) )
13 10 12 syl
 |-  ( ph -> A e. ( ( Scalar ` W ) RingHom W ) )
14 5 crngringd
 |-  ( ph -> R e. Ring )
15 1 ply1sca
 |-  ( R e. Ring -> R = ( Scalar ` W ) )
16 14 15 syl
 |-  ( ph -> R = ( Scalar ` W ) )
17 16 eqcomd
 |-  ( ph -> ( Scalar ` W ) = R )
18 17 oveq1d
 |-  ( ph -> ( ( Scalar ` W ) RingHom W ) = ( R RingHom W ) )
19 13 18 eleqtrd
 |-  ( ph -> A e. ( R RingHom W ) )
20 19 6 4 3 rhmzrhval
 |-  ( ph -> ( A ` ( C ` X ) ) = ( B ` X ) )