Step |
Hyp |
Ref |
Expression |
1 |
|
ply1asclzrhval.1 |
|- W = ( Poly1 ` R ) |
2 |
|
ply1asclzrhval.2 |
|- A = ( algSc ` W ) |
3 |
|
ply1asclzrhval.3 |
|- B = ( ZRHom ` W ) |
4 |
|
ply1asclzrhval.4 |
|- C = ( ZRHom ` R ) |
5 |
|
ply1asclzrhval.5 |
|- ( ph -> R e. CRing ) |
6 |
|
ply1asclzrhval.6 |
|- ( ph -> X e. ZZ ) |
7 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
8 |
7
|
ply1assa |
|- ( R e. CRing -> ( Poly1 ` R ) e. AssAlg ) |
9 |
5 8
|
syl |
|- ( ph -> ( Poly1 ` R ) e. AssAlg ) |
10 |
1 9
|
eqeltrid |
|- ( ph -> W e. AssAlg ) |
11 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
12 |
2 11
|
asclrhm |
|- ( W e. AssAlg -> A e. ( ( Scalar ` W ) RingHom W ) ) |
13 |
10 12
|
syl |
|- ( ph -> A e. ( ( Scalar ` W ) RingHom W ) ) |
14 |
5
|
crngringd |
|- ( ph -> R e. Ring ) |
15 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` W ) ) |
16 |
14 15
|
syl |
|- ( ph -> R = ( Scalar ` W ) ) |
17 |
16
|
eqcomd |
|- ( ph -> ( Scalar ` W ) = R ) |
18 |
17
|
oveq1d |
|- ( ph -> ( ( Scalar ` W ) RingHom W ) = ( R RingHom W ) ) |
19 |
13 18
|
eleqtrd |
|- ( ph -> A e. ( R RingHom W ) ) |
20 |
19 6 4 3
|
rhmzrhval |
|- ( ph -> ( A ` ( C ` X ) ) = ( B ` X ) ) |