Step |
Hyp |
Ref |
Expression |
1 |
|
ply1asclzrhval.1 |
⊢ 𝑊 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1asclzrhval.2 |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
3 |
|
ply1asclzrhval.3 |
⊢ 𝐵 = ( ℤRHom ‘ 𝑊 ) |
4 |
|
ply1asclzrhval.4 |
⊢ 𝐶 = ( ℤRHom ‘ 𝑅 ) |
5 |
|
ply1asclzrhval.5 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
ply1asclzrhval.6 |
⊢ ( 𝜑 → 𝑋 ∈ ℤ ) |
7 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
8 |
7
|
ply1assa |
⊢ ( 𝑅 ∈ CRing → ( Poly1 ‘ 𝑅 ) ∈ AssAlg ) |
9 |
5 8
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝑅 ) ∈ AssAlg ) |
10 |
1 9
|
eqeltrid |
⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) |
11 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
12 |
2 11
|
asclrhm |
⊢ ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) ) |
13 |
10 12
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) ) |
14 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
15 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑊 ) ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑊 ) ) |
17 |
16
|
eqcomd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) = 𝑅 ) |
18 |
17
|
oveq1d |
⊢ ( 𝜑 → ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) = ( 𝑅 RingHom 𝑊 ) ) |
19 |
13 18
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑅 RingHom 𝑊 ) ) |
20 |
19 6 4 3
|
rhmzrhval |
⊢ ( 𝜑 → ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) ) = ( 𝐵 ‘ 𝑋 ) ) |