Metamath Proof Explorer


Theorem ply1asclzrhval

Description: Transfer results from algebraic scalars and ZR ring homomorphisms. (Contributed by metakunt, 17-Jun-2025)

Ref Expression
Hypotheses ply1asclzrhval.1 𝑊 = ( Poly1𝑅 )
ply1asclzrhval.2 𝐴 = ( algSc ‘ 𝑊 )
ply1asclzrhval.3 𝐵 = ( ℤRHom ‘ 𝑊 )
ply1asclzrhval.4 𝐶 = ( ℤRHom ‘ 𝑅 )
ply1asclzrhval.5 ( 𝜑𝑅 ∈ CRing )
ply1asclzrhval.6 ( 𝜑𝑋 ∈ ℤ )
Assertion ply1asclzrhval ( 𝜑 → ( 𝐴 ‘ ( 𝐶𝑋 ) ) = ( 𝐵𝑋 ) )

Proof

Step Hyp Ref Expression
1 ply1asclzrhval.1 𝑊 = ( Poly1𝑅 )
2 ply1asclzrhval.2 𝐴 = ( algSc ‘ 𝑊 )
3 ply1asclzrhval.3 𝐵 = ( ℤRHom ‘ 𝑊 )
4 ply1asclzrhval.4 𝐶 = ( ℤRHom ‘ 𝑅 )
5 ply1asclzrhval.5 ( 𝜑𝑅 ∈ CRing )
6 ply1asclzrhval.6 ( 𝜑𝑋 ∈ ℤ )
7 eqid ( Poly1𝑅 ) = ( Poly1𝑅 )
8 7 ply1assa ( 𝑅 ∈ CRing → ( Poly1𝑅 ) ∈ AssAlg )
9 5 8 syl ( 𝜑 → ( Poly1𝑅 ) ∈ AssAlg )
10 1 9 eqeltrid ( 𝜑𝑊 ∈ AssAlg )
11 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
12 2 11 asclrhm ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) )
13 10 12 syl ( 𝜑𝐴 ∈ ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) )
14 5 crngringd ( 𝜑𝑅 ∈ Ring )
15 1 ply1sca ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑊 ) )
16 14 15 syl ( 𝜑𝑅 = ( Scalar ‘ 𝑊 ) )
17 16 eqcomd ( 𝜑 → ( Scalar ‘ 𝑊 ) = 𝑅 )
18 17 oveq1d ( 𝜑 → ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) = ( 𝑅 RingHom 𝑊 ) )
19 13 18 eleqtrd ( 𝜑𝐴 ∈ ( 𝑅 RingHom 𝑊 ) )
20 19 6 4 3 rhmzrhval ( 𝜑 → ( 𝐴 ‘ ( 𝐶𝑋 ) ) = ( 𝐵𝑋 ) )