Step |
Hyp |
Ref |
Expression |
1 |
|
aks5lema.1 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
2 |
|
aks5lema.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks5lema.3 |
⊢ ( 𝜑 → ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁 ) ) |
4 |
|
aks5lema.9 |
⊢ 𝐵 = ( 𝑆 /s ( 𝑆 ~QG 𝐿 ) ) |
5 |
|
aks5lema.10 |
⊢ 𝐿 = ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } ) |
6 |
|
aks5lema.11 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
7 |
|
aks5lema.14 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
8 |
|
aks5lema.15 |
⊢ 𝑆 = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
9 |
|
aks5lem3a.4 |
⊢ 𝐹 = ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↦ ( 𝐺 ∘ 𝑝 ) ) |
10 |
|
aks5lem3a.5 |
⊢ 𝐺 = ( 𝑞 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ∪ ( ( ℤRHom ‘ 𝐾 ) “ 𝑞 ) ) |
11 |
|
aks5lem3a.6 |
⊢ 𝐻 = ( 𝑟 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑟 ) ‘ 𝑀 ) ) |
12 |
|
aks5lem3a.7 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
13 |
|
aks5lem3a.8 |
⊢ 𝐼 = ( 𝑠 ∈ ( Base ‘ 𝐵 ) ↦ ∪ ( ( 𝐻 ∘ 𝐹 ) “ 𝑠 ) ) |
14 |
|
aks5lem3a.12 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
15 |
|
aks5lem3a.13 |
⊢ ( 𝜑 → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
16 |
1
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
17 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
18 |
17
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
19 |
16 18
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
20 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
21 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .g ‘ ( mulGrp ‘ 𝐾 ) ) |
22 |
19 20 21
|
isprimroot |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ↔ ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑑 ∈ ℕ0 ( ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑑 ) ) ) ) |
23 |
12 22
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑑 ∈ ℕ0 ( ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑑 ) ) ) |
24 |
23
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
26 |
17 25
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
27 |
26
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) = ( Base ‘ 𝐾 ) |
28 |
24 27
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ 𝐾 ) ) |
29 |
1 2 3 9 10 11 28
|
aks5lem1 |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom 𝐾 ) ) |
30 |
|
eqid |
⊢ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
31 |
30 17
|
rhmmhm |
⊢ ( ( 𝐻 ∘ 𝐹 ) ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom 𝐾 ) → ( 𝐻 ∘ 𝐹 ) ∈ ( ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) MndHom ( mulGrp ‘ 𝐾 ) ) ) |
32 |
29 31
|
syl |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ ( ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) MndHom ( mulGrp ‘ 𝐾 ) ) ) |
33 |
3
|
simp2d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
34 |
33
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
35 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
36 |
|
eqid |
⊢ ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
37 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑁 ) = ( ℤ/nℤ ‘ 𝑁 ) |
38 |
37
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤ/nℤ ‘ 𝑁 ) ∈ CRing ) |
39 |
34 38
|
syl |
⊢ ( 𝜑 → ( ℤ/nℤ ‘ 𝑁 ) ∈ CRing ) |
40 |
|
eqid |
⊢ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
41 |
40
|
ply1crng |
⊢ ( ( ℤ/nℤ ‘ 𝑁 ) ∈ CRing → ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ CRing ) |
42 |
39 41
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ CRing ) |
43 |
42
|
crngringd |
⊢ ( 𝜑 → ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ Ring ) |
44 |
|
ringgrp |
⊢ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ Ring → ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ Grp ) |
45 |
43 44
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ Grp ) |
46 |
39
|
crngringd |
⊢ ( 𝜑 → ( ℤ/nℤ ‘ 𝑁 ) ∈ Ring ) |
47 |
|
eqid |
⊢ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
48 |
47 40 35
|
vr1cl |
⊢ ( ( ℤ/nℤ ‘ 𝑁 ) ∈ Ring → ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
49 |
46 48
|
syl |
⊢ ( 𝜑 → ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
50 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
51 |
|
eqid |
⊢ ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
52 |
|
eqid |
⊢ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
53 |
40 50 51 52 39 14
|
ply1asclzrhval |
⊢ ( 𝜑 → ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) = ( ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ 𝐴 ) ) |
54 |
51
|
zrhrhm |
⊢ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ Ring → ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ∈ ( ℤring RingHom ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
55 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
56 |
55 35
|
rhmf |
⊢ ( ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ∈ ( ℤring RingHom ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) : ℤ ⟶ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
57 |
54 56
|
syl |
⊢ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ Ring → ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) : ℤ ⟶ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
58 |
43 57
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) : ℤ ⟶ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
59 |
58 14
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
60 |
53 59
|
eqeltrd |
⊢ ( 𝜑 → ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
61 |
35 36 45 49 60
|
grpcld |
⊢ ( 𝜑 → ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
62 |
30 35
|
mgpbas |
⊢ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
63 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
64 |
62 63 21
|
mhmmulg |
⊢ ( ( ( 𝐻 ∘ 𝐹 ) ∈ ( ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) MndHom ( mulGrp ‘ 𝐾 ) ) ∧ 𝑁 ∈ ℕ0 ∧ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( ( 𝐻 ∘ 𝐹 ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝐻 ∘ 𝐹 ) ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ) |
65 |
32 34 61 64
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝐻 ∘ 𝐹 ) ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ) |
66 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
67 |
16
|
crngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
68 |
2
|
eqcomi |
⊢ ( chr ‘ 𝐾 ) = 𝑃 |
69 |
3
|
simp1d |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
70 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
71 |
69 70
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
72 |
71
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
73 |
68 72
|
eqeltrid |
⊢ ( 𝜑 → ( chr ‘ 𝐾 ) ∈ ℤ ) |
74 |
68
|
a1i |
⊢ ( 𝜑 → ( chr ‘ 𝐾 ) = 𝑃 ) |
75 |
3
|
simp3d |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
76 |
74 75
|
eqbrtrd |
⊢ ( 𝜑 → ( chr ‘ 𝐾 ) ∥ 𝑁 ) |
77 |
67 33 73 76 37 10
|
zndvdchrrhm |
⊢ ( 𝜑 → 𝐺 ∈ ( ( ℤ/nℤ ‘ 𝑁 ) RingHom 𝐾 ) ) |
78 |
40 66 35 9 77
|
rhmply1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom ( Poly1 ‘ 𝐾 ) ) ) |
79 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
80 |
35 79
|
rhmf |
⊢ ( 𝐹 ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom ( Poly1 ‘ 𝐾 ) ) → 𝐹 : ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
81 |
78 80
|
syl |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
82 |
81 61
|
fvco3d |
⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) = ( 𝐻 ‘ ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ) |
83 |
11
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( 𝑟 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑟 ) ‘ 𝑀 ) ) ) |
84 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 = ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) → 𝑟 = ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) |
85 |
84
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑟 = ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) → ( ( eval1 ‘ 𝐾 ) ‘ 𝑟 ) = ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ) |
86 |
85
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑟 = ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑟 ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑀 ) ) |
87 |
81 61
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
88 |
|
fvexd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑀 ) ∈ V ) |
89 |
83 86 87 88
|
fvmptd |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑀 ) ) |
90 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom ( Poly1 ‘ 𝐾 ) ) → 𝐹 ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) GrpHom ( Poly1 ‘ 𝐾 ) ) ) |
91 |
78 90
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) GrpHom ( Poly1 ‘ 𝐾 ) ) ) |
92 |
|
eqid |
⊢ ( +g ‘ ( Poly1 ‘ 𝐾 ) ) = ( +g ‘ ( Poly1 ‘ 𝐾 ) ) |
93 |
35 36 92
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) GrpHom ( Poly1 ‘ 𝐾 ) ) ∧ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ∧ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) = ( ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) |
94 |
91 49 60 93
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) = ( ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) |
95 |
|
eqid |
⊢ ( var1 ‘ 𝐾 ) = ( var1 ‘ 𝐾 ) |
96 |
40 66 35 9 47 95 77
|
rhmply1vr1 |
⊢ ( 𝜑 → ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( var1 ‘ 𝐾 ) ) |
97 |
53
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) = ( 𝐹 ‘ ( ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ 𝐴 ) ) ) |
98 |
|
eqid |
⊢ ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) = ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) |
99 |
78 14 51 98
|
rhmzrhval |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ 𝐴 ) ) = ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) |
100 |
97 99
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) = ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) |
101 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) = ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) |
102 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 ) |
103 |
66 101 98 102 16 14
|
ply1asclzrhval |
⊢ ( 𝜑 → ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) = ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) |
104 |
100 103
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) = ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
105 |
96 104
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) = ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
106 |
94 105
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) = ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
107 |
106
|
fveq2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
108 |
107
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑀 ) ) |
109 |
89 108
|
eqtrd |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 𝐹 ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑀 ) ) |
110 |
82 109
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑀 ) ) |
111 |
110
|
oveq2d |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝐻 ∘ 𝐹 ) ‘ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑀 ) ) ) |
112 |
65 111
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑀 ) ) = ( ( 𝐻 ∘ 𝐹 ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ) |
113 |
|
eceq1 |
⊢ ( 𝑢 = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) → [ 𝑢 ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) = [ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) |
114 |
113
|
fveq2d |
⊢ ( 𝑢 = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) → ( 𝐼 ‘ [ 𝑢 ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) = ( 𝐼 ‘ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) ) |
115 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑢 ) = ( ( 𝐻 ∘ 𝐹 ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ) |
116 |
114 115
|
eqeq12d |
⊢ ( 𝑢 = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) → ( ( 𝐼 ‘ [ 𝑢 ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) = ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑢 ) ↔ ( 𝐼 ‘ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) = ( ( 𝐻 ∘ 𝐹 ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ) ) |
117 |
8
|
oveq1i |
⊢ ( 𝑆 ~QG 𝐿 ) = ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) |
118 |
8 117
|
oveq12i |
⊢ ( 𝑆 /s ( 𝑆 ~QG 𝐿 ) ) = ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) /s ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) |
119 |
4 118
|
eqtri |
⊢ 𝐵 = ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) /s ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) |
120 |
8
|
fveq2i |
⊢ ( RSpan ‘ 𝑆 ) = ( RSpan ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
121 |
8
|
fveq2i |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
122 |
121
|
fveq2i |
⊢ ( .g ‘ ( mulGrp ‘ 𝑆 ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
123 |
122
|
oveqi |
⊢ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( 𝑅 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
124 |
8
|
fveq2i |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
125 |
8
|
fveq2i |
⊢ ( -g ‘ 𝑆 ) = ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
126 |
123 124 125
|
oveq123i |
⊢ ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = ( ( 𝑅 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
127 |
126
|
sneqi |
⊢ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } = { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) } |
128 |
120 127
|
fveq12i |
⊢ ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } ) = ( ( RSpan ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) } ) |
129 |
5 128
|
eqtri |
⊢ 𝐿 = ( ( RSpan ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) } ) |
130 |
1 2 3 9 10 11 12 13 119 129 6
|
aks5lem2 |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 𝐵 RingHom 𝐾 ) ∧ ∀ 𝑢 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( 𝐼 ‘ [ 𝑢 ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) = ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑢 ) ) ) |
131 |
130
|
simprd |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( 𝐼 ‘ [ 𝑢 ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) = ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑢 ) ) |
132 |
30
|
ringmgp |
⊢ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ Ring → ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ∈ Mnd ) |
133 |
43 132
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ∈ Mnd ) |
134 |
62 63 133 34 61
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
135 |
116 131 134
|
rspcdva |
⊢ ( 𝜑 → ( 𝐼 ‘ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) = ( ( 𝐻 ∘ 𝐹 ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ) |
136 |
135
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) = ( 𝐼 ‘ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) ) |
137 |
8
|
eqcomi |
⊢ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = 𝑆 |
138 |
137
|
a1i |
⊢ ( 𝜑 → ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = 𝑆 ) |
139 |
138
|
fveq2d |
⊢ ( 𝜑 → ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( mulGrp ‘ 𝑆 ) ) |
140 |
139
|
fveq2d |
⊢ ( 𝜑 → ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ) |
141 |
|
eqidd |
⊢ ( 𝜑 → 𝑁 = 𝑁 ) |
142 |
138
|
fveq2d |
⊢ ( 𝜑 → ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( +g ‘ 𝑆 ) ) |
143 |
|
eqidd |
⊢ ( 𝜑 → ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
144 |
138
|
fveq2d |
⊢ ( 𝜑 → ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( algSc ‘ 𝑆 ) ) |
145 |
144
|
fveq1d |
⊢ ( 𝜑 → ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) = ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) |
146 |
142 143 145
|
oveq123d |
⊢ ( 𝜑 → ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) = ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) |
147 |
140 141 146
|
oveq123d |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) |
148 |
147
|
eceq1d |
⊢ ( 𝜑 → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) = [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) |
149 |
138
|
oveq1d |
⊢ ( 𝜑 → ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) = ( 𝑆 ~QG 𝐿 ) ) |
150 |
149
|
eceq2d |
⊢ ( 𝜑 → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) = [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
151 |
148 150
|
eqtrd |
⊢ ( 𝜑 → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) = [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
152 |
|
eqcom |
⊢ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = 𝑆 ↔ 𝑆 = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
153 |
152
|
imbi2i |
⊢ ( ( 𝜑 → ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = 𝑆 ) ↔ ( 𝜑 → 𝑆 = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
154 |
138 153
|
mpbi |
⊢ ( 𝜑 → 𝑆 = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
155 |
154
|
fveq2d |
⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
156 |
154
|
fveq2d |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
157 |
156
|
fveq2d |
⊢ ( 𝜑 → ( .g ‘ ( mulGrp ‘ 𝑆 ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ) |
158 |
157
|
oveqd |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
159 |
154
|
fveq2d |
⊢ ( 𝜑 → ( algSc ‘ 𝑆 ) = ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
160 |
159
|
fveq1d |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) = ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) |
161 |
155 158 160
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) |
162 |
161
|
eceq1d |
⊢ ( 𝜑 → [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
163 |
149
|
eqcomd |
⊢ ( 𝜑 → ( 𝑆 ~QG 𝐿 ) = ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) |
164 |
163
|
eceq2d |
⊢ ( 𝜑 → [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) |
165 |
162 164
|
eqtrd |
⊢ ( 𝜑 → [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) |
166 |
151 15 165
|
3eqtrd |
⊢ ( 𝜑 → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) |
167 |
166
|
fveq2d |
⊢ ( 𝜑 → ( 𝐼 ‘ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) = ( 𝐼 ‘ [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) ) |
168 |
|
eceq1 |
⊢ ( 𝑢 = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) → [ 𝑢 ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) |
169 |
168
|
fveq2d |
⊢ ( 𝑢 = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) → ( 𝐼 ‘ [ 𝑢 ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) = ( 𝐼 ‘ [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) ) |
170 |
|
fveq2 |
⊢ ( 𝑢 = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑢 ) = ( ( 𝐻 ∘ 𝐹 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) |
171 |
169 170
|
eqeq12d |
⊢ ( 𝑢 = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) → ( ( 𝐼 ‘ [ 𝑢 ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) = ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑢 ) ↔ ( 𝐼 ‘ [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) = ( ( 𝐻 ∘ 𝐹 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ) |
172 |
62 63 133 34 49
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
173 |
35 36 45 172 60
|
grpcld |
⊢ ( 𝜑 → ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
174 |
171 131 173
|
rspcdva |
⊢ ( 𝜑 → ( 𝐼 ‘ [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ] ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ~QG 𝐿 ) ) = ( ( 𝐻 ∘ 𝐹 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) |
175 |
136 167 174
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) = ( ( 𝐻 ∘ 𝐹 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) |
176 |
81 173
|
fvco3d |
⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) = ( 𝐻 ‘ ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ) |
177 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 = ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) → 𝑟 = ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) |
178 |
177
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑟 = ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) → ( ( eval1 ‘ 𝐾 ) ‘ 𝑟 ) = ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ) |
179 |
178
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑟 = ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑟 ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑀 ) ) |
180 |
81 173
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
181 |
|
fvexd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑀 ) ∈ V ) |
182 |
83 179 180 181
|
fvmptd |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑀 ) ) |
183 |
35 36 92
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) GrpHom ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ∧ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) |
184 |
91 172 60 183
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) |
185 |
184
|
fveq2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐹 ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ) |
186 |
185
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐹 ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑀 ) ) |
187 |
|
eqid |
⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) = ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) |
188 |
30 187
|
rhmmhm |
⊢ ( 𝐹 ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom ( Poly1 ‘ 𝐾 ) ) → 𝐹 ∈ ( ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) MndHom ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
189 |
78 188
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) MndHom ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
190 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
191 |
62 63 190
|
mhmmulg |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) MndHom ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ∧ 𝑁 ∈ ℕ0 ∧ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( 𝐹 ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ) |
192 |
189 34 49 191
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ) |
193 |
192 97
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ 𝐴 ) ) ) ) |
194 |
193
|
fveq2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐹 ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ 𝐴 ) ) ) ) ) |
195 |
194
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐹 ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ 𝐴 ) ) ) ) ‘ 𝑀 ) ) |
196 |
96
|
oveq2d |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ) |
197 |
196 99
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ 𝐴 ) ) ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ) |
198 |
197
|
fveq2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ 𝐴 ) ) ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ) ) |
199 |
198
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ 𝐴 ) ) ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ) ‘ 𝑀 ) ) |
200 |
|
eqid |
⊢ ( eval1 ‘ 𝐾 ) = ( eval1 ‘ 𝐾 ) |
201 |
200 95 25 66 79 16 28
|
evl1vard |
⊢ ( 𝜑 → ( ( var1 ‘ 𝐾 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( var1 ‘ 𝐾 ) ) ‘ 𝑀 ) = 𝑀 ) ) |
202 |
200 66 25 79 16 28 201 190 21 34
|
evl1expd |
⊢ ( 𝜑 → ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ) ‘ 𝑀 ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
203 |
66
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
204 |
16 203
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
205 |
204
|
crngringd |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Ring ) |
206 |
98
|
zrhrhm |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ Ring → ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ∈ ( ℤring RingHom ( Poly1 ‘ 𝐾 ) ) ) |
207 |
55 79
|
rhmf |
⊢ ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ∈ ( ℤring RingHom ( Poly1 ‘ 𝐾 ) ) → ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) : ℤ ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
208 |
206 207
|
syl |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ Ring → ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) : ℤ ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
209 |
205 208
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) : ℤ ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
210 |
209 14
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
211 |
|
eqidd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ‘ 𝑀 ) ) |
212 |
210 211
|
jca |
⊢ ( 𝜑 → ( ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ‘ 𝑀 ) ) ) |
213 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
214 |
200 66 25 79 16 28 202 212 92 213
|
evl1addd |
⊢ ( 𝜑 → ( ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ) ‘ 𝑀 ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ‘ 𝑀 ) ) ) ) |
215 |
214
|
simprd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ) ‘ 𝑀 ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ‘ 𝑀 ) ) ) |
216 |
102
|
zrhrhm |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
217 |
55 25
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
218 |
216 217
|
syl |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
219 |
67 218
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
220 |
219 14
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ∈ ( Base ‘ 𝐾 ) ) |
221 |
200 66 25 101 79 16 220 28
|
evl1scad |
⊢ ( 𝜑 → ( ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ 𝑀 ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
222 |
221
|
simprd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ 𝑀 ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) |
223 |
222
|
eqcomd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ 𝑀 ) ) |
224 |
103
|
fveq2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ) |
225 |
224
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ‘ 𝑀 ) ) |
226 |
223 225
|
eqtr2d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ‘ 𝑀 ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) |
227 |
226
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ‘ 𝑀 ) ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
228 |
215 227
|
eqtrd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ) ‘ 𝑀 ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
229 |
199 228
|
eqtrd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ 𝐴 ) ) ) ) ‘ 𝑀 ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
230 |
19
|
cmnmndd |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ Mnd ) |
231 |
26 21 230 34 28
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ ( Base ‘ 𝐾 ) ) |
232 |
200 95 25 66 79 16 231
|
evl1vard |
⊢ ( 𝜑 → ( ( var1 ‘ 𝐾 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( var1 ‘ 𝐾 ) ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
233 |
200 66 25 101 79 16 220 231
|
evl1scad |
⊢ ( 𝜑 → ( ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
234 |
200 66 25 79 16 231 232 233 92 213
|
evl1addd |
⊢ ( 𝜑 → ( ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
235 |
234
|
simprd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
236 |
229 235
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( 𝐹 ‘ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( ℤRHom ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ 𝐴 ) ) ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
237 |
195 236
|
eqtrd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐹 ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐹 ‘ ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
238 |
186 237
|
eqtrd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
239 |
182 238
|
eqtrd |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 𝐹 ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
240 |
176 239
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ‘ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
241 |
112 175 240
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |