| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmply1vr1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
rhmply1vr1.q |
⊢ 𝑄 = ( Poly1 ‘ 𝑆 ) |
| 3 |
|
rhmply1vr1.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
rhmply1vr1.f |
⊢ 𝐹 = ( 𝑝 ∈ 𝐵 ↦ ( 𝐻 ∘ 𝑝 ) ) |
| 5 |
|
rhmply1vr1.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 6 |
|
rhmply1vr1.y |
⊢ 𝑌 = ( var1 ‘ 𝑆 ) |
| 7 |
|
rhmply1vr1.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 8 |
|
coeq2 |
⊢ ( 𝑝 = 𝑋 → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ 𝑋 ) ) |
| 9 |
|
rhmrcl1 |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) |
| 10 |
7 9
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 11 |
5 1 3
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 13 |
5
|
fvexi |
⊢ 𝑋 ∈ V |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 15 |
7 14
|
coexd |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝑋 ) ∈ V ) |
| 16 |
4 8 12 15
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( 𝐻 ∘ 𝑋 ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 19 |
17 18
|
rhmf |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 20 |
7 19
|
syl |
⊢ ( 𝜑 → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 21 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 22 |
17 21
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 23 |
10 22
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 25 |
17 24
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
10 25
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 27 |
23 26
|
ifcld |
⊢ ( 𝜑 → if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 |
20 28
|
cofmpt |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐻 ‘ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 30 |
|
fvif |
⊢ ( 𝐻 ‘ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) , ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 31 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 32 |
21 31
|
rhm1 |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 33 |
7 32
|
syl |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 34 |
|
rhmghm |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 35 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 36 |
24 35
|
ghmid |
⊢ ( 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 37 |
7 34 36
|
3syl |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 38 |
33 37
|
ifeq12d |
⊢ ( 𝜑 → if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) , ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) ) = if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) |
| 39 |
30 38
|
eqtrid |
⊢ ( 𝜑 → ( 𝐻 ‘ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) |
| 40 |
39
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐻 ‘ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) ) |
| 41 |
29 40
|
eqtrd |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) ) |
| 42 |
|
eqid |
⊢ ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 ) |
| 43 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 44 |
|
1oex |
⊢ 1o ∈ V |
| 45 |
44
|
a1i |
⊢ ( 𝜑 → 1o ∈ V ) |
| 46 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 1o ) |
| 48 |
42 43 24 21 45 10 47
|
mvrval |
⊢ ( 𝜑 → ( ( 1o mVar 𝑅 ) ‘ ∅ ) = ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 49 |
48
|
coeq2d |
⊢ ( 𝜑 → ( 𝐻 ∘ ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( 𝐻 ∘ ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 50 |
|
eqid |
⊢ ( 1o mVar 𝑆 ) = ( 1o mVar 𝑆 ) |
| 51 |
|
rhmrcl2 |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) |
| 52 |
7 51
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 53 |
50 43 35 31 45 52 47
|
mvrval |
⊢ ( 𝜑 → ( ( 1o mVar 𝑆 ) ‘ ∅ ) = ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) ) |
| 54 |
41 49 53
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐻 ∘ ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( 1o mVar 𝑆 ) ‘ ∅ ) ) |
| 55 |
5
|
vr1val |
⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
| 56 |
55
|
coeq2i |
⊢ ( 𝐻 ∘ 𝑋 ) = ( 𝐻 ∘ ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) |
| 57 |
6
|
vr1val |
⊢ 𝑌 = ( ( 1o mVar 𝑆 ) ‘ ∅ ) |
| 58 |
54 56 57
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝑋 ) = 𝑌 ) |
| 59 |
16 58
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = 𝑌 ) |