| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmply1vsca.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | rhmply1vsca.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝑆 ) | 
						
							| 3 |  | rhmply1vsca.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | rhmply1vsca.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | rhmply1vsca.f | ⊢ 𝐹  =  ( 𝑝  ∈  𝐵  ↦  ( 𝐻  ∘  𝑝 ) ) | 
						
							| 6 |  | rhmply1vsca.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 7 |  | rhmply1vsca.u | ⊢  ∙   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 8 |  | rhmply1vsca.h | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 9 |  | rhmply1vsca.c | ⊢ ( 𝜑  →  𝐶  ∈  𝐾 ) | 
						
							| 10 |  | rhmply1vsca.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 11 |  | fconst6g | ⊢ ( 𝐶  ∈  𝐾  →  ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { 𝐶 } ) : { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ⟶ 𝐾 ) | 
						
							| 12 | 9 11 | syl | ⊢ ( 𝜑  →  ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { 𝐶 } ) : { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ⟶ 𝐾 ) | 
						
							| 13 |  | psr1baslem | ⊢ ( ℕ0  ↑m  1o )  =  { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } | 
						
							| 14 | 13 | feq2i | ⊢ ( ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { 𝐶 } ) : ( ℕ0  ↑m  1o ) ⟶ 𝐾  ↔  ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { 𝐶 } ) : { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ⟶ 𝐾 ) | 
						
							| 15 | 12 14 | sylibr | ⊢ ( 𝜑  →  ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { 𝐶 } ) : ( ℕ0  ↑m  1o ) ⟶ 𝐾 ) | 
						
							| 16 | 1 3 4 | ply1basf | ⊢ ( 𝑋  ∈  𝐵  →  𝑋 : ( ℕ0  ↑m  1o ) ⟶ 𝐾 ) | 
						
							| 17 | 10 16 | syl | ⊢ ( 𝜑  →  𝑋 : ( ℕ0  ↑m  1o ) ⟶ 𝐾 ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 19 | 4 18 | rhmf | ⊢ ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐻 : 𝐾 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 20 | 8 19 | syl | ⊢ ( 𝜑  →  𝐻 : 𝐾 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 21 | 20 | ffnd | ⊢ ( 𝜑  →  𝐻  Fn  𝐾 ) | 
						
							| 22 |  | ovexd | ⊢ ( 𝜑  →  ( ℕ0  ↑m  1o )  ∈  V ) | 
						
							| 23 |  | rhmrcl1 | ⊢ ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑅  ∈  Ring ) | 
						
							| 24 | 8 23 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 25 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 26 | 4 25 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑎  ∈  𝐾  ∧  𝑏  ∈  𝐾 )  →  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  𝐾 ) | 
						
							| 27 | 24 26 | syl3an1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐾  ∧  𝑏  ∈  𝐾 )  →  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  𝐾 ) | 
						
							| 28 | 27 | 3expb | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐾  ∧  𝑏  ∈  𝐾 ) )  →  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  𝐾 ) | 
						
							| 29 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 30 | 4 25 29 | rhmmul | ⊢ ( ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑎  ∈  𝐾  ∧  𝑏  ∈  𝐾 )  →  ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  =  ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) | 
						
							| 31 | 8 30 | syl3an1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐾  ∧  𝑏  ∈  𝐾 )  →  ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  =  ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) | 
						
							| 32 | 31 | 3expb | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐾  ∧  𝑏  ∈  𝐾 ) )  →  ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  =  ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) | 
						
							| 33 | 15 17 21 22 28 32 | coof | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { 𝐶 } )  ∘f  ( .r ‘ 𝑅 ) 𝑋 ) )  =  ( ( 𝐻  ∘  ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { 𝐶 } ) )  ∘f  ( .r ‘ 𝑆 ) ( 𝐻  ∘  𝑋 ) ) ) | 
						
							| 34 |  | fcoconst | ⊢ ( ( 𝐻  Fn  𝐾  ∧  𝐶  ∈  𝐾 )  →  ( 𝐻  ∘  ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { 𝐶 } ) )  =  ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { ( 𝐻 ‘ 𝐶 ) } ) ) | 
						
							| 35 | 21 9 34 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { 𝐶 } ) )  =  ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { ( 𝐻 ‘ 𝐶 ) } ) ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐻  ∘  ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { 𝐶 } ) )  ∘f  ( .r ‘ 𝑆 ) ( 𝐻  ∘  𝑋 ) )  =  ( ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { ( 𝐻 ‘ 𝐶 ) } )  ∘f  ( .r ‘ 𝑆 ) ( 𝐻  ∘  𝑋 ) ) ) | 
						
							| 37 | 33 36 | eqtrd | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { 𝐶 } )  ∘f  ( .r ‘ 𝑅 ) 𝑋 ) )  =  ( ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { ( 𝐻 ‘ 𝐶 ) } )  ∘f  ( .r ‘ 𝑆 ) ( 𝐻  ∘  𝑋 ) ) ) | 
						
							| 38 |  | eqid | ⊢ ( 1o  mPoly  𝑅 )  =  ( 1o  mPoly  𝑅 ) | 
						
							| 39 |  | eqid | ⊢ (  ·𝑠  ‘ ( 1o  mPoly  𝑅 ) )  =  (  ·𝑠  ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 40 | 1 3 | ply1bas | ⊢ 𝐵  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 41 |  | eqid | ⊢ { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  =  { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } | 
						
							| 42 | 38 39 4 40 25 41 9 10 | mplvsca | ⊢ ( 𝜑  →  ( 𝐶 (  ·𝑠  ‘ ( 1o  mPoly  𝑅 ) ) 𝑋 )  =  ( ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { 𝐶 } )  ∘f  ( .r ‘ 𝑅 ) 𝑋 ) ) | 
						
							| 43 | 42 | coeq2d | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝐶 (  ·𝑠  ‘ ( 1o  mPoly  𝑅 ) ) 𝑋 ) )  =  ( 𝐻  ∘  ( ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { 𝐶 } )  ∘f  ( .r ‘ 𝑅 ) 𝑋 ) ) ) | 
						
							| 44 |  | eqid | ⊢ ( 1o  mPoly  𝑆 )  =  ( 1o  mPoly  𝑆 ) | 
						
							| 45 |  | eqid | ⊢ (  ·𝑠  ‘ ( 1o  mPoly  𝑆 ) )  =  (  ·𝑠  ‘ ( 1o  mPoly  𝑆 ) ) | 
						
							| 46 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 47 | 2 46 | ply1bas | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ ( 1o  mPoly  𝑆 ) ) | 
						
							| 48 | 20 9 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝐶 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 49 |  | rhmghm | ⊢ ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐻  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 50 |  | ghmmhm | ⊢ ( 𝐻  ∈  ( 𝑅  GrpHom  𝑆 )  →  𝐻  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 51 | 8 49 50 | 3syl | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 52 | 1 2 3 46 51 10 | mhmcoply1 | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝑋 )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 53 | 44 45 18 47 29 41 48 52 | mplvsca | ⊢ ( 𝜑  →  ( ( 𝐻 ‘ 𝐶 ) (  ·𝑠  ‘ ( 1o  mPoly  𝑆 ) ) ( 𝐻  ∘  𝑋 ) )  =  ( ( { ℎ  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ×  { ( 𝐻 ‘ 𝐶 ) } )  ∘f  ( .r ‘ 𝑆 ) ( 𝐻  ∘  𝑋 ) ) ) | 
						
							| 54 | 37 43 53 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝐶 (  ·𝑠  ‘ ( 1o  mPoly  𝑅 ) ) 𝑋 ) )  =  ( ( 𝐻 ‘ 𝐶 ) (  ·𝑠  ‘ ( 1o  mPoly  𝑆 ) ) ( 𝐻  ∘  𝑋 ) ) ) | 
						
							| 55 | 1 38 6 | ply1vsca | ⊢  ·   =  (  ·𝑠  ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 56 | 55 | oveqi | ⊢ ( 𝐶  ·  𝑋 )  =  ( 𝐶 (  ·𝑠  ‘ ( 1o  mPoly  𝑅 ) ) 𝑋 ) | 
						
							| 57 | 56 | coeq2i | ⊢ ( 𝐻  ∘  ( 𝐶  ·  𝑋 ) )  =  ( 𝐻  ∘  ( 𝐶 (  ·𝑠  ‘ ( 1o  mPoly  𝑅 ) ) 𝑋 ) ) | 
						
							| 58 | 2 44 7 | ply1vsca | ⊢  ∙   =  (  ·𝑠  ‘ ( 1o  mPoly  𝑆 ) ) | 
						
							| 59 | 58 | oveqi | ⊢ ( ( 𝐻 ‘ 𝐶 )  ∙  ( 𝐻  ∘  𝑋 ) )  =  ( ( 𝐻 ‘ 𝐶 ) (  ·𝑠  ‘ ( 1o  mPoly  𝑆 ) ) ( 𝐻  ∘  𝑋 ) ) | 
						
							| 60 | 54 57 59 | 3eqtr4g | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝐻 ‘ 𝐶 )  ∙  ( 𝐻  ∘  𝑋 ) ) ) | 
						
							| 61 |  | coeq2 | ⊢ ( 𝑝  =  ( 𝐶  ·  𝑋 )  →  ( 𝐻  ∘  𝑝 )  =  ( 𝐻  ∘  ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 62 | 1 3 4 6 24 9 10 | ply1vscl | ⊢ ( 𝜑  →  ( 𝐶  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 63 | 8 62 | coexd | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝐶  ·  𝑋 ) )  ∈  V ) | 
						
							| 64 | 5 61 62 63 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐶  ·  𝑋 ) )  =  ( 𝐻  ∘  ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 65 |  | coeq2 | ⊢ ( 𝑝  =  𝑋  →  ( 𝐻  ∘  𝑝 )  =  ( 𝐻  ∘  𝑋 ) ) | 
						
							| 66 | 8 10 | coexd | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝑋 )  ∈  V ) | 
						
							| 67 | 5 65 10 66 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝐻  ∘  𝑋 ) ) | 
						
							| 68 | 67 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐻 ‘ 𝐶 )  ∙  ( 𝐹 ‘ 𝑋 ) )  =  ( ( 𝐻 ‘ 𝐶 )  ∙  ( 𝐻  ∘  𝑋 ) ) ) | 
						
							| 69 | 60 64 68 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐶  ·  𝑋 ) )  =  ( ( 𝐻 ‘ 𝐶 )  ∙  ( 𝐹 ‘ 𝑋 ) ) ) |