| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmply1mon.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | rhmply1mon.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝑆 ) | 
						
							| 3 |  | rhmply1mon.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | rhmply1mon.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | rhmply1mon.f | ⊢ 𝐹  =  ( 𝑝  ∈  𝐵  ↦  ( 𝐻  ∘  𝑝 ) ) | 
						
							| 6 |  | rhmply1mon.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | rhmply1mon.y | ⊢ 𝑌  =  ( var1 ‘ 𝑆 ) | 
						
							| 8 |  | rhmply1mon.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 9 |  | rhmply1mon.u | ⊢  ∙   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 10 |  | rhmply1mon.m | ⊢ 𝑀  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 11 |  | rhmply1mon.n | ⊢ 𝑁  =  ( mulGrp ‘ 𝑄 ) | 
						
							| 12 |  | rhmply1mon.l | ⊢  ↑   =  ( .g ‘ 𝑀 ) | 
						
							| 13 |  | rhmply1mon.w | ⊢  ∧   =  ( .g ‘ 𝑁 ) | 
						
							| 14 |  | rhmply1mon.h | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 15 |  | rhmply1mon.c | ⊢ ( 𝜑  →  𝐶  ∈  𝐾 ) | 
						
							| 16 |  | rhmply1mon.e | ⊢ ( 𝜑  →  𝐸  ∈  ℕ0 ) | 
						
							| 17 | 10 3 | mgpbas | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 18 |  | rhmrcl1 | ⊢ ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑅  ∈  Ring ) | 
						
							| 19 | 14 18 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 20 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  𝑃  ∈  Ring ) | 
						
							| 22 | 10 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  𝑀  ∈  Mnd ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  𝑀  ∈  Mnd ) | 
						
							| 24 | 6 1 3 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  𝐵 ) | 
						
							| 25 | 19 24 | syl | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 26 | 17 12 23 16 25 | mulgnn0cld | ⊢ ( 𝜑  →  ( 𝐸  ↑  𝑋 )  ∈  𝐵 ) | 
						
							| 27 | 1 2 3 4 5 8 9 14 15 26 | rhmply1vsca | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐶  ·  ( 𝐸  ↑  𝑋 ) ) )  =  ( ( 𝐻 ‘ 𝐶 )  ∙  ( 𝐹 ‘ ( 𝐸  ↑  𝑋 ) ) ) ) | 
						
							| 28 | 1 2 3 5 14 | rhmply1 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑃  RingHom  𝑄 ) ) | 
						
							| 29 | 10 11 | rhmmhm | ⊢ ( 𝐹  ∈  ( 𝑃  RingHom  𝑄 )  →  𝐹  ∈  ( 𝑀  MndHom  𝑁 ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑀  MndHom  𝑁 ) ) | 
						
							| 31 | 17 12 13 | mhmmulg | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝐸  ∈  ℕ0  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝐸  ↑  𝑋 ) )  =  ( 𝐸  ∧  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 32 | 30 16 25 31 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐸  ↑  𝑋 ) )  =  ( 𝐸  ∧  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 33 | 1 2 3 5 6 7 14 | rhmply1vr1 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  =  𝑌 ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( 𝜑  →  ( 𝐸  ∧  ( 𝐹 ‘ 𝑋 ) )  =  ( 𝐸  ∧  𝑌 ) ) | 
						
							| 35 | 32 34 | eqtrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐸  ↑  𝑋 ) )  =  ( 𝐸  ∧  𝑌 ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐻 ‘ 𝐶 )  ∙  ( 𝐹 ‘ ( 𝐸  ↑  𝑋 ) ) )  =  ( ( 𝐻 ‘ 𝐶 )  ∙  ( 𝐸  ∧  𝑌 ) ) ) | 
						
							| 37 | 27 36 | eqtrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐶  ·  ( 𝐸  ↑  𝑋 ) ) )  =  ( ( 𝐻 ‘ 𝐶 )  ∙  ( 𝐸  ∧  𝑌 ) ) ) |