| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmply1mon.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | rhmply1mon.q |  |-  Q = ( Poly1 ` S ) | 
						
							| 3 |  | rhmply1mon.b |  |-  B = ( Base ` P ) | 
						
							| 4 |  | rhmply1mon.k |  |-  K = ( Base ` R ) | 
						
							| 5 |  | rhmply1mon.f |  |-  F = ( p e. B |-> ( H o. p ) ) | 
						
							| 6 |  | rhmply1mon.x |  |-  X = ( var1 ` R ) | 
						
							| 7 |  | rhmply1mon.y |  |-  Y = ( var1 ` S ) | 
						
							| 8 |  | rhmply1mon.t |  |-  .x. = ( .s ` P ) | 
						
							| 9 |  | rhmply1mon.u |  |-  .xb = ( .s ` Q ) | 
						
							| 10 |  | rhmply1mon.m |  |-  M = ( mulGrp ` P ) | 
						
							| 11 |  | rhmply1mon.n |  |-  N = ( mulGrp ` Q ) | 
						
							| 12 |  | rhmply1mon.l |  |-  .^ = ( .g ` M ) | 
						
							| 13 |  | rhmply1mon.w |  |-  ./\ = ( .g ` N ) | 
						
							| 14 |  | rhmply1mon.h |  |-  ( ph -> H e. ( R RingHom S ) ) | 
						
							| 15 |  | rhmply1mon.c |  |-  ( ph -> C e. K ) | 
						
							| 16 |  | rhmply1mon.e |  |-  ( ph -> E e. NN0 ) | 
						
							| 17 | 10 3 | mgpbas |  |-  B = ( Base ` M ) | 
						
							| 18 |  | rhmrcl1 |  |-  ( H e. ( R RingHom S ) -> R e. Ring ) | 
						
							| 19 | 14 18 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 20 | 1 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> P e. Ring ) | 
						
							| 22 | 10 | ringmgp |  |-  ( P e. Ring -> M e. Mnd ) | 
						
							| 23 | 21 22 | syl |  |-  ( ph -> M e. Mnd ) | 
						
							| 24 | 6 1 3 | vr1cl |  |-  ( R e. Ring -> X e. B ) | 
						
							| 25 | 19 24 | syl |  |-  ( ph -> X e. B ) | 
						
							| 26 | 17 12 23 16 25 | mulgnn0cld |  |-  ( ph -> ( E .^ X ) e. B ) | 
						
							| 27 | 1 2 3 4 5 8 9 14 15 26 | rhmply1vsca |  |-  ( ph -> ( F ` ( C .x. ( E .^ X ) ) ) = ( ( H ` C ) .xb ( F ` ( E .^ X ) ) ) ) | 
						
							| 28 | 1 2 3 5 14 | rhmply1 |  |-  ( ph -> F e. ( P RingHom Q ) ) | 
						
							| 29 | 10 11 | rhmmhm |  |-  ( F e. ( P RingHom Q ) -> F e. ( M MndHom N ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ph -> F e. ( M MndHom N ) ) | 
						
							| 31 | 17 12 13 | mhmmulg |  |-  ( ( F e. ( M MndHom N ) /\ E e. NN0 /\ X e. B ) -> ( F ` ( E .^ X ) ) = ( E ./\ ( F ` X ) ) ) | 
						
							| 32 | 30 16 25 31 | syl3anc |  |-  ( ph -> ( F ` ( E .^ X ) ) = ( E ./\ ( F ` X ) ) ) | 
						
							| 33 | 1 2 3 5 6 7 14 | rhmply1vr1 |  |-  ( ph -> ( F ` X ) = Y ) | 
						
							| 34 | 33 | oveq2d |  |-  ( ph -> ( E ./\ ( F ` X ) ) = ( E ./\ Y ) ) | 
						
							| 35 | 32 34 | eqtrd |  |-  ( ph -> ( F ` ( E .^ X ) ) = ( E ./\ Y ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( ph -> ( ( H ` C ) .xb ( F ` ( E .^ X ) ) ) = ( ( H ` C ) .xb ( E ./\ Y ) ) ) | 
						
							| 37 | 27 36 | eqtrd |  |-  ( ph -> ( F ` ( C .x. ( E .^ X ) ) ) = ( ( H ` C ) .xb ( E ./\ Y ) ) ) |