| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmply1vsca.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | rhmply1vsca.q |  |-  Q = ( Poly1 ` S ) | 
						
							| 3 |  | rhmply1vsca.b |  |-  B = ( Base ` P ) | 
						
							| 4 |  | rhmply1vsca.k |  |-  K = ( Base ` R ) | 
						
							| 5 |  | rhmply1vsca.f |  |-  F = ( p e. B |-> ( H o. p ) ) | 
						
							| 6 |  | rhmply1vsca.t |  |-  .x. = ( .s ` P ) | 
						
							| 7 |  | rhmply1vsca.u |  |-  .xb = ( .s ` Q ) | 
						
							| 8 |  | rhmply1vsca.h |  |-  ( ph -> H e. ( R RingHom S ) ) | 
						
							| 9 |  | rhmply1vsca.c |  |-  ( ph -> C e. K ) | 
						
							| 10 |  | rhmply1vsca.x |  |-  ( ph -> X e. B ) | 
						
							| 11 |  | fconst6g |  |-  ( C e. K -> ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) : { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } --> K ) | 
						
							| 12 | 9 11 | syl |  |-  ( ph -> ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) : { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } --> K ) | 
						
							| 13 |  | psr1baslem |  |-  ( NN0 ^m 1o ) = { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } | 
						
							| 14 | 13 | feq2i |  |-  ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) : ( NN0 ^m 1o ) --> K <-> ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) : { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } --> K ) | 
						
							| 15 | 12 14 | sylibr |  |-  ( ph -> ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) : ( NN0 ^m 1o ) --> K ) | 
						
							| 16 | 1 3 4 | ply1basf |  |-  ( X e. B -> X : ( NN0 ^m 1o ) --> K ) | 
						
							| 17 | 10 16 | syl |  |-  ( ph -> X : ( NN0 ^m 1o ) --> K ) | 
						
							| 18 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 19 | 4 18 | rhmf |  |-  ( H e. ( R RingHom S ) -> H : K --> ( Base ` S ) ) | 
						
							| 20 | 8 19 | syl |  |-  ( ph -> H : K --> ( Base ` S ) ) | 
						
							| 21 | 20 | ffnd |  |-  ( ph -> H Fn K ) | 
						
							| 22 |  | ovexd |  |-  ( ph -> ( NN0 ^m 1o ) e. _V ) | 
						
							| 23 |  | rhmrcl1 |  |-  ( H e. ( R RingHom S ) -> R e. Ring ) | 
						
							| 24 | 8 23 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 25 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 26 | 4 25 | ringcl |  |-  ( ( R e. Ring /\ a e. K /\ b e. K ) -> ( a ( .r ` R ) b ) e. K ) | 
						
							| 27 | 24 26 | syl3an1 |  |-  ( ( ph /\ a e. K /\ b e. K ) -> ( a ( .r ` R ) b ) e. K ) | 
						
							| 28 | 27 | 3expb |  |-  ( ( ph /\ ( a e. K /\ b e. K ) ) -> ( a ( .r ` R ) b ) e. K ) | 
						
							| 29 |  | eqid |  |-  ( .r ` S ) = ( .r ` S ) | 
						
							| 30 | 4 25 29 | rhmmul |  |-  ( ( H e. ( R RingHom S ) /\ a e. K /\ b e. K ) -> ( H ` ( a ( .r ` R ) b ) ) = ( ( H ` a ) ( .r ` S ) ( H ` b ) ) ) | 
						
							| 31 | 8 30 | syl3an1 |  |-  ( ( ph /\ a e. K /\ b e. K ) -> ( H ` ( a ( .r ` R ) b ) ) = ( ( H ` a ) ( .r ` S ) ( H ` b ) ) ) | 
						
							| 32 | 31 | 3expb |  |-  ( ( ph /\ ( a e. K /\ b e. K ) ) -> ( H ` ( a ( .r ` R ) b ) ) = ( ( H ` a ) ( .r ` S ) ( H ` b ) ) ) | 
						
							| 33 | 15 17 21 22 28 32 | coof |  |-  ( ph -> ( H o. ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) oF ( .r ` R ) X ) ) = ( ( H o. ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) ) oF ( .r ` S ) ( H o. X ) ) ) | 
						
							| 34 |  | fcoconst |  |-  ( ( H Fn K /\ C e. K ) -> ( H o. ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) ) = ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { ( H ` C ) } ) ) | 
						
							| 35 | 21 9 34 | syl2anc |  |-  ( ph -> ( H o. ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) ) = ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { ( H ` C ) } ) ) | 
						
							| 36 | 35 | oveq1d |  |-  ( ph -> ( ( H o. ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) ) oF ( .r ` S ) ( H o. X ) ) = ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { ( H ` C ) } ) oF ( .r ` S ) ( H o. X ) ) ) | 
						
							| 37 | 33 36 | eqtrd |  |-  ( ph -> ( H o. ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) oF ( .r ` R ) X ) ) = ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { ( H ` C ) } ) oF ( .r ` S ) ( H o. X ) ) ) | 
						
							| 38 |  | eqid |  |-  ( 1o mPoly R ) = ( 1o mPoly R ) | 
						
							| 39 |  | eqid |  |-  ( .s ` ( 1o mPoly R ) ) = ( .s ` ( 1o mPoly R ) ) | 
						
							| 40 | 1 3 | ply1bas |  |-  B = ( Base ` ( 1o mPoly R ) ) | 
						
							| 41 |  | eqid |  |-  { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } | 
						
							| 42 | 38 39 4 40 25 41 9 10 | mplvsca |  |-  ( ph -> ( C ( .s ` ( 1o mPoly R ) ) X ) = ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) oF ( .r ` R ) X ) ) | 
						
							| 43 | 42 | coeq2d |  |-  ( ph -> ( H o. ( C ( .s ` ( 1o mPoly R ) ) X ) ) = ( H o. ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) oF ( .r ` R ) X ) ) ) | 
						
							| 44 |  | eqid |  |-  ( 1o mPoly S ) = ( 1o mPoly S ) | 
						
							| 45 |  | eqid |  |-  ( .s ` ( 1o mPoly S ) ) = ( .s ` ( 1o mPoly S ) ) | 
						
							| 46 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 47 | 2 46 | ply1bas |  |-  ( Base ` Q ) = ( Base ` ( 1o mPoly S ) ) | 
						
							| 48 | 20 9 | ffvelcdmd |  |-  ( ph -> ( H ` C ) e. ( Base ` S ) ) | 
						
							| 49 |  | rhmghm |  |-  ( H e. ( R RingHom S ) -> H e. ( R GrpHom S ) ) | 
						
							| 50 |  | ghmmhm |  |-  ( H e. ( R GrpHom S ) -> H e. ( R MndHom S ) ) | 
						
							| 51 | 8 49 50 | 3syl |  |-  ( ph -> H e. ( R MndHom S ) ) | 
						
							| 52 | 1 2 3 46 51 10 | mhmcoply1 |  |-  ( ph -> ( H o. X ) e. ( Base ` Q ) ) | 
						
							| 53 | 44 45 18 47 29 41 48 52 | mplvsca |  |-  ( ph -> ( ( H ` C ) ( .s ` ( 1o mPoly S ) ) ( H o. X ) ) = ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { ( H ` C ) } ) oF ( .r ` S ) ( H o. X ) ) ) | 
						
							| 54 | 37 43 53 | 3eqtr4d |  |-  ( ph -> ( H o. ( C ( .s ` ( 1o mPoly R ) ) X ) ) = ( ( H ` C ) ( .s ` ( 1o mPoly S ) ) ( H o. X ) ) ) | 
						
							| 55 | 1 38 6 | ply1vsca |  |-  .x. = ( .s ` ( 1o mPoly R ) ) | 
						
							| 56 | 55 | oveqi |  |-  ( C .x. X ) = ( C ( .s ` ( 1o mPoly R ) ) X ) | 
						
							| 57 | 56 | coeq2i |  |-  ( H o. ( C .x. X ) ) = ( H o. ( C ( .s ` ( 1o mPoly R ) ) X ) ) | 
						
							| 58 | 2 44 7 | ply1vsca |  |-  .xb = ( .s ` ( 1o mPoly S ) ) | 
						
							| 59 | 58 | oveqi |  |-  ( ( H ` C ) .xb ( H o. X ) ) = ( ( H ` C ) ( .s ` ( 1o mPoly S ) ) ( H o. X ) ) | 
						
							| 60 | 54 57 59 | 3eqtr4g |  |-  ( ph -> ( H o. ( C .x. X ) ) = ( ( H ` C ) .xb ( H o. X ) ) ) | 
						
							| 61 |  | coeq2 |  |-  ( p = ( C .x. X ) -> ( H o. p ) = ( H o. ( C .x. X ) ) ) | 
						
							| 62 | 1 3 4 6 24 9 10 | ply1vscl |  |-  ( ph -> ( C .x. X ) e. B ) | 
						
							| 63 | 8 62 | coexd |  |-  ( ph -> ( H o. ( C .x. X ) ) e. _V ) | 
						
							| 64 | 5 61 62 63 | fvmptd3 |  |-  ( ph -> ( F ` ( C .x. X ) ) = ( H o. ( C .x. X ) ) ) | 
						
							| 65 |  | coeq2 |  |-  ( p = X -> ( H o. p ) = ( H o. X ) ) | 
						
							| 66 | 8 10 | coexd |  |-  ( ph -> ( H o. X ) e. _V ) | 
						
							| 67 | 5 65 10 66 | fvmptd3 |  |-  ( ph -> ( F ` X ) = ( H o. X ) ) | 
						
							| 68 | 67 | oveq2d |  |-  ( ph -> ( ( H ` C ) .xb ( F ` X ) ) = ( ( H ` C ) .xb ( H o. X ) ) ) | 
						
							| 69 | 60 64 68 | 3eqtr4d |  |-  ( ph -> ( F ` ( C .x. X ) ) = ( ( H ` C ) .xb ( F ` X ) ) ) |