| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmply1.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | rhmply1.q |  |-  Q = ( Poly1 ` S ) | 
						
							| 3 |  | rhmply1.b |  |-  B = ( Base ` P ) | 
						
							| 4 |  | rhmply1.f |  |-  F = ( p e. B |-> ( H o. p ) ) | 
						
							| 5 |  | rhmply1.h |  |-  ( ph -> H e. ( R RingHom S ) ) | 
						
							| 6 |  | eqid |  |-  ( 1o mPoly R ) = ( 1o mPoly R ) | 
						
							| 7 |  | eqid |  |-  ( 1o mPoly S ) = ( 1o mPoly S ) | 
						
							| 8 | 1 3 | ply1bas |  |-  B = ( Base ` ( 1o mPoly R ) ) | 
						
							| 9 |  | 1oex |  |-  1o e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ph -> 1o e. _V ) | 
						
							| 11 | 6 7 8 4 10 5 | rhmmpl |  |-  ( ph -> F e. ( ( 1o mPoly R ) RingHom ( 1o mPoly S ) ) ) | 
						
							| 12 | 3 | a1i |  |-  ( ph -> B = ( Base ` P ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 14 | 13 | a1i |  |-  ( ph -> ( Base ` Q ) = ( Base ` Q ) ) | 
						
							| 15 | 8 | a1i |  |-  ( ph -> B = ( Base ` ( 1o mPoly R ) ) ) | 
						
							| 16 | 2 13 | ply1bas |  |-  ( Base ` Q ) = ( Base ` ( 1o mPoly S ) ) | 
						
							| 17 | 16 | a1i |  |-  ( ph -> ( Base ` Q ) = ( Base ` ( 1o mPoly S ) ) ) | 
						
							| 18 |  | eqid |  |-  ( +g ` P ) = ( +g ` P ) | 
						
							| 19 | 1 6 18 | ply1plusg |  |-  ( +g ` P ) = ( +g ` ( 1o mPoly R ) ) | 
						
							| 20 | 19 | oveqi |  |-  ( x ( +g ` P ) y ) = ( x ( +g ` ( 1o mPoly R ) ) y ) | 
						
							| 21 | 20 | a1i |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` P ) y ) = ( x ( +g ` ( 1o mPoly R ) ) y ) ) | 
						
							| 22 |  | eqid |  |-  ( +g ` Q ) = ( +g ` Q ) | 
						
							| 23 | 2 7 22 | ply1plusg |  |-  ( +g ` Q ) = ( +g ` ( 1o mPoly S ) ) | 
						
							| 24 | 23 | oveqi |  |-  ( x ( +g ` Q ) y ) = ( x ( +g ` ( 1o mPoly S ) ) y ) | 
						
							| 25 | 24 | a1i |  |-  ( ( ph /\ ( x e. ( Base ` Q ) /\ y e. ( Base ` Q ) ) ) -> ( x ( +g ` Q ) y ) = ( x ( +g ` ( 1o mPoly S ) ) y ) ) | 
						
							| 26 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 27 | 1 6 26 | ply1mulr |  |-  ( .r ` P ) = ( .r ` ( 1o mPoly R ) ) | 
						
							| 28 | 27 | oveqi |  |-  ( x ( .r ` P ) y ) = ( x ( .r ` ( 1o mPoly R ) ) y ) | 
						
							| 29 | 28 | a1i |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` P ) y ) = ( x ( .r ` ( 1o mPoly R ) ) y ) ) | 
						
							| 30 |  | eqid |  |-  ( .r ` Q ) = ( .r ` Q ) | 
						
							| 31 | 2 7 30 | ply1mulr |  |-  ( .r ` Q ) = ( .r ` ( 1o mPoly S ) ) | 
						
							| 32 | 31 | oveqi |  |-  ( x ( .r ` Q ) y ) = ( x ( .r ` ( 1o mPoly S ) ) y ) | 
						
							| 33 | 32 | a1i |  |-  ( ( ph /\ ( x e. ( Base ` Q ) /\ y e. ( Base ` Q ) ) ) -> ( x ( .r ` Q ) y ) = ( x ( .r ` ( 1o mPoly S ) ) y ) ) | 
						
							| 34 | 12 14 15 17 21 25 29 33 | rhmpropd |  |-  ( ph -> ( P RingHom Q ) = ( ( 1o mPoly R ) RingHom ( 1o mPoly S ) ) ) | 
						
							| 35 | 11 34 | eleqtrrd |  |-  ( ph -> F e. ( P RingHom Q ) ) |