| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmmpl.p |
|- P = ( I mPoly R ) |
| 2 |
|
rhmmpl.q |
|- Q = ( I mPoly S ) |
| 3 |
|
rhmmpl.b |
|- B = ( Base ` P ) |
| 4 |
|
rhmmpl.f |
|- F = ( p e. B |-> ( H o. p ) ) |
| 5 |
|
rhmmpl.i |
|- ( ph -> I e. V ) |
| 6 |
|
rhmmpl.h |
|- ( ph -> H e. ( R RingHom S ) ) |
| 7 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 8 |
|
eqid |
|- ( 1r ` Q ) = ( 1r ` Q ) |
| 9 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 10 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
| 11 |
|
rhmrcl1 |
|- ( H e. ( R RingHom S ) -> R e. Ring ) |
| 12 |
6 11
|
syl |
|- ( ph -> R e. Ring ) |
| 13 |
1 5 12
|
mplringd |
|- ( ph -> P e. Ring ) |
| 14 |
|
rhmrcl2 |
|- ( H e. ( R RingHom S ) -> S e. Ring ) |
| 15 |
6 14
|
syl |
|- ( ph -> S e. Ring ) |
| 16 |
2 5 15
|
mplringd |
|- ( ph -> Q e. Ring ) |
| 17 |
|
eqid |
|- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
| 18 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 19 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 20 |
1 17 18 19 7 5 12
|
mpl1 |
|- ( ph -> ( 1r ` P ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 21 |
20
|
coeq2d |
|- ( ph -> ( H o. ( 1r ` P ) ) = ( H o. ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) |
| 22 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 23 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 24 |
22 23
|
rhmf |
|- ( H e. ( R RingHom S ) -> H : ( Base ` R ) --> ( Base ` S ) ) |
| 25 |
6 24
|
syl |
|- ( ph -> H : ( Base ` R ) --> ( Base ` S ) ) |
| 26 |
22 19
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 27 |
12 26
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 28 |
22 18
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
| 29 |
12 28
|
syl |
|- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
| 30 |
27 29
|
ifcld |
|- ( ph -> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` R ) ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` R ) ) |
| 32 |
25 31
|
cofmpt |
|- ( ph -> ( H o. ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( H ` if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) |
| 33 |
|
fvif |
|- ( H ` if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) = if ( d = ( I X. { 0 } ) , ( H ` ( 1r ` R ) ) , ( H ` ( 0g ` R ) ) ) |
| 34 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 35 |
19 34
|
rhm1 |
|- ( H e. ( R RingHom S ) -> ( H ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 36 |
6 35
|
syl |
|- ( ph -> ( H ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 37 |
|
rhmghm |
|- ( H e. ( R RingHom S ) -> H e. ( R GrpHom S ) ) |
| 38 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 39 |
18 38
|
ghmid |
|- ( H e. ( R GrpHom S ) -> ( H ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 40 |
6 37 39
|
3syl |
|- ( ph -> ( H ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 41 |
36 40
|
ifeq12d |
|- ( ph -> if ( d = ( I X. { 0 } ) , ( H ` ( 1r ` R ) ) , ( H ` ( 0g ` R ) ) ) = if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) |
| 42 |
33 41
|
eqtrid |
|- ( ph -> ( H ` if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) = if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) |
| 43 |
42
|
mpteq2dv |
|- ( ph -> ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( H ` if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) ) |
| 44 |
21 32 43
|
3eqtrd |
|- ( ph -> ( H o. ( 1r ` P ) ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) ) |
| 45 |
|
coeq2 |
|- ( p = ( 1r ` P ) -> ( H o. p ) = ( H o. ( 1r ` P ) ) ) |
| 46 |
3 7
|
ringidcl |
|- ( P e. Ring -> ( 1r ` P ) e. B ) |
| 47 |
13 46
|
syl |
|- ( ph -> ( 1r ` P ) e. B ) |
| 48 |
6 47
|
coexd |
|- ( ph -> ( H o. ( 1r ` P ) ) e. _V ) |
| 49 |
4 45 47 48
|
fvmptd3 |
|- ( ph -> ( F ` ( 1r ` P ) ) = ( H o. ( 1r ` P ) ) ) |
| 50 |
2 17 38 34 8 5 15
|
mpl1 |
|- ( ph -> ( 1r ` Q ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) ) |
| 51 |
44 49 50
|
3eqtr4d |
|- ( ph -> ( F ` ( 1r ` P ) ) = ( 1r ` Q ) ) |
| 52 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 53 |
6
|
adantr |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> H e. ( R RingHom S ) ) |
| 54 |
|
simprl |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> x e. B ) |
| 55 |
|
simprr |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> y e. B ) |
| 56 |
1 2 3 52 9 10 53 54 55
|
rhmcomulmpl |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. ( x ( .r ` P ) y ) ) = ( ( H o. x ) ( .r ` Q ) ( H o. y ) ) ) |
| 57 |
|
coeq2 |
|- ( p = ( x ( .r ` P ) y ) -> ( H o. p ) = ( H o. ( x ( .r ` P ) y ) ) ) |
| 58 |
13
|
adantr |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> P e. Ring ) |
| 59 |
3 9 58 54 55
|
ringcld |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` P ) y ) e. B ) |
| 60 |
|
ovexd |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` P ) y ) e. _V ) |
| 61 |
53 60
|
coexd |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. ( x ( .r ` P ) y ) ) e. _V ) |
| 62 |
4 57 59 61
|
fvmptd3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x ( .r ` P ) y ) ) = ( H o. ( x ( .r ` P ) y ) ) ) |
| 63 |
|
coeq2 |
|- ( p = x -> ( H o. p ) = ( H o. x ) ) |
| 64 |
53 54
|
coexd |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. x ) e. _V ) |
| 65 |
4 63 54 64
|
fvmptd3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` x ) = ( H o. x ) ) |
| 66 |
|
coeq2 |
|- ( p = y -> ( H o. p ) = ( H o. y ) ) |
| 67 |
53 55
|
coexd |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. y ) e. _V ) |
| 68 |
4 66 55 67
|
fvmptd3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` y ) = ( H o. y ) ) |
| 69 |
65 68
|
oveq12d |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( F ` x ) ( .r ` Q ) ( F ` y ) ) = ( ( H o. x ) ( .r ` Q ) ( H o. y ) ) ) |
| 70 |
56 62 69
|
3eqtr4d |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x ( .r ` P ) y ) ) = ( ( F ` x ) ( .r ` Q ) ( F ` y ) ) ) |
| 71 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
| 72 |
|
eqid |
|- ( +g ` Q ) = ( +g ` Q ) |
| 73 |
|
ghmmhm |
|- ( H e. ( R GrpHom S ) -> H e. ( R MndHom S ) ) |
| 74 |
6 37 73
|
3syl |
|- ( ph -> H e. ( R MndHom S ) ) |
| 75 |
74
|
adantr |
|- ( ( ph /\ p e. B ) -> H e. ( R MndHom S ) ) |
| 76 |
|
simpr |
|- ( ( ph /\ p e. B ) -> p e. B ) |
| 77 |
1 2 3 52 75 76
|
mhmcompl |
|- ( ( ph /\ p e. B ) -> ( H o. p ) e. ( Base ` Q ) ) |
| 78 |
77 4
|
fmptd |
|- ( ph -> F : B --> ( Base ` Q ) ) |
| 79 |
53 37 73
|
3syl |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> H e. ( R MndHom S ) ) |
| 80 |
1 2 3 52 71 72 79 54 55
|
mhmcoaddmpl |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. ( x ( +g ` P ) y ) ) = ( ( H o. x ) ( +g ` Q ) ( H o. y ) ) ) |
| 81 |
|
coeq2 |
|- ( p = ( x ( +g ` P ) y ) -> ( H o. p ) = ( H o. ( x ( +g ` P ) y ) ) ) |
| 82 |
13
|
ringgrpd |
|- ( ph -> P e. Grp ) |
| 83 |
82
|
adantr |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> P e. Grp ) |
| 84 |
3 71 83 54 55
|
grpcld |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` P ) y ) e. B ) |
| 85 |
|
ovexd |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` P ) y ) e. _V ) |
| 86 |
53 85
|
coexd |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. ( x ( +g ` P ) y ) ) e. _V ) |
| 87 |
4 81 84 86
|
fvmptd3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x ( +g ` P ) y ) ) = ( H o. ( x ( +g ` P ) y ) ) ) |
| 88 |
65 68
|
oveq12d |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( F ` x ) ( +g ` Q ) ( F ` y ) ) = ( ( H o. x ) ( +g ` Q ) ( H o. y ) ) ) |
| 89 |
80 87 88
|
3eqtr4d |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x ( +g ` P ) y ) ) = ( ( F ` x ) ( +g ` Q ) ( F ` y ) ) ) |
| 90 |
3 7 8 9 10 13 16 51 70 52 71 72 78 89
|
isrhmd |
|- ( ph -> F e. ( P RingHom Q ) ) |