Step |
Hyp |
Ref |
Expression |
1 |
|
mhmcompl.p |
|- P = ( I mPoly R ) |
2 |
|
mhmcompl.q |
|- Q = ( I mPoly S ) |
3 |
|
mhmcompl.b |
|- B = ( Base ` P ) |
4 |
|
mhmcompl.c |
|- C = ( Base ` Q ) |
5 |
|
mhmcompl.i |
|- ( ph -> I e. V ) |
6 |
|
mhmcompl.h |
|- ( ph -> H e. ( R MndHom S ) ) |
7 |
|
mhmcompl.f |
|- ( ph -> F e. B ) |
8 |
|
fvexd |
|- ( ph -> ( Base ` S ) e. _V ) |
9 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
10 |
9
|
rabex |
|- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V |
11 |
10
|
a1i |
|- ( ph -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) |
12 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
13 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
14 |
12 13
|
mhmf |
|- ( H e. ( R MndHom S ) -> H : ( Base ` R ) --> ( Base ` S ) ) |
15 |
6 14
|
syl |
|- ( ph -> H : ( Base ` R ) --> ( Base ` S ) ) |
16 |
|
eqid |
|- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
17 |
1 12 3 16 7
|
mplelf |
|- ( ph -> F : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
18 |
15 17
|
fcod |
|- ( ph -> ( H o. F ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` S ) ) |
19 |
8 11 18
|
elmapdd |
|- ( ph -> ( H o. F ) e. ( ( Base ` S ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
20 |
|
eqid |
|- ( I mPwSer S ) = ( I mPwSer S ) |
21 |
|
eqid |
|- ( Base ` ( I mPwSer S ) ) = ( Base ` ( I mPwSer S ) ) |
22 |
20 13 16 21 5
|
psrbas |
|- ( ph -> ( Base ` ( I mPwSer S ) ) = ( ( Base ` S ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
23 |
19 22
|
eleqtrrd |
|- ( ph -> ( H o. F ) e. ( Base ` ( I mPwSer S ) ) ) |
24 |
|
fvexd |
|- ( ph -> ( 0g ` S ) e. _V ) |
25 |
|
mhmrcl1 |
|- ( H e. ( R MndHom S ) -> R e. Mnd ) |
26 |
6 25
|
syl |
|- ( ph -> R e. Mnd ) |
27 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
28 |
12 27
|
mndidcl |
|- ( R e. Mnd -> ( 0g ` R ) e. ( Base ` R ) ) |
29 |
26 28
|
syl |
|- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
30 |
|
ssidd |
|- ( ph -> ( Base ` R ) C_ ( Base ` R ) ) |
31 |
|
fvexd |
|- ( ph -> ( Base ` R ) e. _V ) |
32 |
1 3 27 7 26
|
mplelsfi |
|- ( ph -> F finSupp ( 0g ` R ) ) |
33 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
34 |
27 33
|
mhm0 |
|- ( H e. ( R MndHom S ) -> ( H ` ( 0g ` R ) ) = ( 0g ` S ) ) |
35 |
6 34
|
syl |
|- ( ph -> ( H ` ( 0g ` R ) ) = ( 0g ` S ) ) |
36 |
24 29 17 15 30 11 31 32 35
|
fsuppcor |
|- ( ph -> ( H o. F ) finSupp ( 0g ` S ) ) |
37 |
2 20 21 33 4
|
mplelbas |
|- ( ( H o. F ) e. C <-> ( ( H o. F ) e. ( Base ` ( I mPwSer S ) ) /\ ( H o. F ) finSupp ( 0g ` S ) ) ) |
38 |
23 36 37
|
sylanbrc |
|- ( ph -> ( H o. F ) e. C ) |