| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmmpl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
rhmmpl.q |
⊢ 𝑄 = ( 𝐼 mPoly 𝑆 ) |
| 3 |
|
rhmmpl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
rhmmpl.f |
⊢ 𝐹 = ( 𝑝 ∈ 𝐵 ↦ ( 𝐻 ∘ 𝑝 ) ) |
| 5 |
|
rhmmpl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
rhmmpl.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 7 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 8 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
| 9 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 10 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
| 11 |
|
rhmrcl1 |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) |
| 12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 13 |
1 5 12
|
mplringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 14 |
|
rhmrcl2 |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) |
| 15 |
6 14
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 16 |
2 5 15
|
mplringd |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
| 17 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 18 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 19 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 20 |
1 17 18 19 7 5 12
|
mpl1 |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 21 |
20
|
coeq2d |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) = ( 𝐻 ∘ ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 24 |
22 23
|
rhmf |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 25 |
6 24
|
syl |
⊢ ( 𝜑 → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 26 |
22 19
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 27 |
12 26
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 28 |
22 18
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 |
12 28
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 30 |
27 29
|
ifcld |
⊢ ( 𝜑 → if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 32 |
25 31
|
cofmpt |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝐻 ‘ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 33 |
|
fvif |
⊢ ( 𝐻 ‘ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) , ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 34 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 35 |
19 34
|
rhm1 |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 36 |
6 35
|
syl |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 37 |
|
rhmghm |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 38 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 39 |
18 38
|
ghmid |
⊢ ( 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 40 |
6 37 39
|
3syl |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 41 |
36 40
|
ifeq12d |
⊢ ( 𝜑 → if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) , ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) |
| 42 |
33 41
|
eqtrid |
⊢ ( 𝜑 → ( 𝐻 ‘ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) |
| 43 |
42
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝐻 ‘ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) ) |
| 44 |
21 32 43
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) ) |
| 45 |
|
coeq2 |
⊢ ( 𝑝 = ( 1r ‘ 𝑃 ) → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) ) |
| 46 |
3 7
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ 𝐵 ) |
| 47 |
13 46
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ 𝐵 ) |
| 48 |
6 47
|
coexd |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) ∈ V ) |
| 49 |
4 45 47 48
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) ) |
| 50 |
2 17 38 34 8 5 15
|
mpl1 |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) ) |
| 51 |
44 49 50
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( 1r ‘ 𝑄 ) ) |
| 52 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 53 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 54 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 55 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 56 |
1 2 3 52 9 10 53 54 55
|
rhmcomulmpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐻 ∘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝐻 ∘ 𝑦 ) ) ) |
| 57 |
|
coeq2 |
⊢ ( 𝑝 = ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) |
| 58 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ Ring ) |
| 59 |
3 9 58 54 55
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 ) |
| 60 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ V ) |
| 61 |
53 60
|
coexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ∈ V ) |
| 62 |
4 57 59 61
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( 𝐻 ∘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) |
| 63 |
|
coeq2 |
⊢ ( 𝑝 = 𝑥 → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ 𝑥 ) ) |
| 64 |
53 54
|
coexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ 𝑥 ) ∈ V ) |
| 65 |
4 63 54 64
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ∘ 𝑥 ) ) |
| 66 |
|
coeq2 |
⊢ ( 𝑝 = 𝑦 → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ 𝑦 ) ) |
| 67 |
53 55
|
coexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ 𝑦 ) ∈ V ) |
| 68 |
4 66 55 67
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ∘ 𝑦 ) ) |
| 69 |
65 68
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐻 ∘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝐻 ∘ 𝑦 ) ) ) |
| 70 |
56 62 69
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 71 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 72 |
|
eqid |
⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) |
| 73 |
|
ghmmhm |
⊢ ( 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 74 |
6 37 73
|
3syl |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 76 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) |
| 77 |
1 2 3 52 75 76
|
mhmcompl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝐻 ∘ 𝑝 ) ∈ ( Base ‘ 𝑄 ) ) |
| 78 |
77 4
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑄 ) ) |
| 79 |
53 37 73
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 80 |
1 2 3 52 71 72 79 54 55
|
mhmcoaddmpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐻 ∘ 𝑥 ) ( +g ‘ 𝑄 ) ( 𝐻 ∘ 𝑦 ) ) ) |
| 81 |
|
coeq2 |
⊢ ( 𝑝 = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ) |
| 82 |
13
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ Grp ) |
| 84 |
3 71 83 54 55
|
grpcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 ) |
| 85 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ V ) |
| 86 |
53 85
|
coexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ∈ V ) |
| 87 |
4 81 84 86
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( 𝐻 ∘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ) |
| 88 |
65 68
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐻 ∘ 𝑥 ) ( +g ‘ 𝑄 ) ( 𝐻 ∘ 𝑦 ) ) ) |
| 89 |
80 87 88
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 90 |
3 7 8 9 10 13 16 51 70 52 71 72 78 89
|
isrhmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑄 ) ) |