Step |
Hyp |
Ref |
Expression |
1 |
|
rhmmpl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
rhmmpl.q |
⊢ 𝑄 = ( 𝐼 mPoly 𝑆 ) |
3 |
|
rhmmpl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
rhmmpl.f |
⊢ 𝐹 = ( 𝑝 ∈ 𝐵 ↦ ( 𝐻 ∘ 𝑝 ) ) |
5 |
|
rhmmpl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
rhmmpl.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) |
7 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
8 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
9 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
11 |
|
rhmrcl1 |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) |
12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
13 |
1 5 12
|
mplringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
14 |
|
rhmrcl2 |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) |
15 |
6 14
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
16 |
2 5 15
|
mplringd |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
17 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
18 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
19 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
20 |
1 17 18 19 7 5 12
|
mpl1 |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
21 |
20
|
coeq2d |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) = ( 𝐻 ∘ ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
24 |
22 23
|
rhmf |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
25 |
6 24
|
syl |
⊢ ( 𝜑 → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
26 |
22 19
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
27 |
12 26
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
28 |
22 18
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
29 |
12 28
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
30 |
27 29
|
ifcld |
⊢ ( 𝜑 → if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
32 |
25 31
|
cofmpt |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝐻 ‘ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
33 |
|
fvif |
⊢ ( 𝐻 ‘ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) , ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) ) |
34 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
35 |
19 34
|
rhm1 |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
36 |
6 35
|
syl |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
37 |
|
rhmghm |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
38 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
39 |
18 38
|
ghmid |
⊢ ( 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
40 |
6 37 39
|
3syl |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
41 |
36 40
|
ifeq12d |
⊢ ( 𝜑 → if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) , ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) |
42 |
33 41
|
eqtrid |
⊢ ( 𝜑 → ( 𝐻 ‘ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) |
43 |
42
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝐻 ‘ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) ) |
44 |
21 32 43
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) ) |
45 |
|
coeq2 |
⊢ ( 𝑝 = ( 1r ‘ 𝑃 ) → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) ) |
46 |
3 7
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ 𝐵 ) |
47 |
13 46
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ 𝐵 ) |
48 |
6 47
|
coexd |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) ∈ V ) |
49 |
4 45 47 48
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) ) |
50 |
2 17 38 34 8 5 15
|
mpl1 |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) ) |
51 |
44 49 50
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( 1r ‘ 𝑄 ) ) |
52 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
53 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑉 ) |
54 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) |
55 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
56 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
57 |
1 2 3 52 9 10 53 54 55 56
|
rhmcomulmpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐻 ∘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝐻 ∘ 𝑦 ) ) ) |
58 |
|
coeq2 |
⊢ ( 𝑝 = ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) |
59 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ Ring ) |
60 |
3 9 59 55 56
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 ) |
61 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ V ) |
62 |
54 61
|
coexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ∈ V ) |
63 |
4 58 60 62
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( 𝐻 ∘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) |
64 |
|
coeq2 |
⊢ ( 𝑝 = 𝑥 → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ 𝑥 ) ) |
65 |
54 55
|
coexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ 𝑥 ) ∈ V ) |
66 |
4 64 55 65
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ∘ 𝑥 ) ) |
67 |
|
coeq2 |
⊢ ( 𝑝 = 𝑦 → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ 𝑦 ) ) |
68 |
54 56
|
coexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ 𝑦 ) ∈ V ) |
69 |
4 67 56 68
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ∘ 𝑦 ) ) |
70 |
66 69
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐻 ∘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝐻 ∘ 𝑦 ) ) ) |
71 |
57 63 70
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) ) ) |
72 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
73 |
|
eqid |
⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) |
74 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐼 ∈ 𝑉 ) |
75 |
|
ghmmhm |
⊢ ( 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
76 |
6 37 75
|
3syl |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
78 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) |
79 |
1 2 3 52 74 77 78
|
mhmcompl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝐻 ∘ 𝑝 ) ∈ ( Base ‘ 𝑄 ) ) |
80 |
79 4
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑄 ) ) |
81 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
82 |
1 2 3 52 72 73 53 81 55 56
|
mhmcoaddmpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐻 ∘ 𝑥 ) ( +g ‘ 𝑄 ) ( 𝐻 ∘ 𝑦 ) ) ) |
83 |
|
coeq2 |
⊢ ( 𝑝 = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ) |
84 |
13
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ Grp ) |
86 |
3 72 85 55 56
|
grpcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 ) |
87 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ V ) |
88 |
54 87
|
coexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ∈ V ) |
89 |
4 83 86 88
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( 𝐻 ∘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ) |
90 |
66 69
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐻 ∘ 𝑥 ) ( +g ‘ 𝑄 ) ( 𝐻 ∘ 𝑦 ) ) ) |
91 |
82 89 90
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) ) ) |
92 |
3 7 8 9 10 13 16 51 71 52 72 73 80 91
|
isrhmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑄 ) ) |