Step |
Hyp |
Ref |
Expression |
1 |
|
mhmvlin.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
mhmvlin.p |
⊢ + = ( +g ‘ 𝑀 ) |
3 |
|
mhmvlin.q |
⊢ ⨣ = ( +g ‘ 𝑁 ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) |
5 |
|
elmapi |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
7 |
6
|
ffvelrnda |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑦 ) ∈ 𝐵 ) |
8 |
|
elmapi |
⊢ ( 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑌 : 𝐼 ⟶ 𝐵 ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑌 : 𝐼 ⟶ 𝐵 ) |
10 |
9
|
ffvelrnda |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑦 ) ∈ 𝐵 ) |
11 |
1 2 3
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ ( 𝑋 ‘ 𝑦 ) ∈ 𝐵 ∧ ( 𝑌 ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝑋 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 𝑌 ‘ 𝑦 ) ) ) ) |
12 |
4 7 10 11
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝐹 ‘ ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝑋 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 𝑌 ‘ 𝑦 ) ) ) ) |
13 |
12
|
mpteq2dva |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑦 ∈ 𝐼 ↦ ( 𝐹 ‘ ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝐹 ‘ ( 𝑋 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 𝑌 ‘ 𝑦 ) ) ) ) ) |
14 |
|
mhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) → 𝑀 ∈ Mnd ) |
15 |
14
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑀 ∈ Mnd ) |
16 |
15
|
3ad2antl1 |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑀 ∈ Mnd ) |
17 |
1 2
|
mndcl |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ‘ 𝑦 ) ∈ 𝐵 ∧ ( 𝑌 ‘ 𝑦 ) ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ∈ 𝐵 ) |
18 |
16 7 10 17
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ∈ 𝐵 ) |
19 |
|
elmapex |
⊢ ( 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) → ( 𝐵 ∈ V ∧ 𝐼 ∈ V ) ) |
20 |
19
|
simprd |
⊢ ( 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) → 𝐼 ∈ V ) |
21 |
20
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝐼 ∈ V ) |
22 |
6
|
feqmptd |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑋 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
23 |
9
|
feqmptd |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑌 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑦 ) ) ) |
24 |
21 7 10 22 23
|
offval2 |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f + 𝑌 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ) ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) |
26 |
1 25
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑁 ) ) |
27 |
26
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑁 ) ) |
28 |
27
|
feqmptd |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝐹 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
29 |
|
fveq2 |
⊢ ( 𝑧 = ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ) ) |
30 |
18 24 28 29
|
fmptco |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝐹 ∘ ( 𝑋 ∘f + 𝑌 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝐹 ‘ ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ) ) ) |
31 |
|
fvexd |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝐹 ‘ ( 𝑋 ‘ 𝑦 ) ) ∈ V ) |
32 |
|
fvexd |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝐹 ‘ ( 𝑌 ‘ 𝑦 ) ) ∈ V ) |
33 |
|
fcompt |
⊢ ( ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑁 ) ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑋 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝐹 ‘ ( 𝑋 ‘ 𝑦 ) ) ) ) |
34 |
27 6 33
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝐹 ∘ 𝑋 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝐹 ‘ ( 𝑋 ‘ 𝑦 ) ) ) ) |
35 |
|
fcompt |
⊢ ( ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑁 ) ∧ 𝑌 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑌 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝐹 ‘ ( 𝑌 ‘ 𝑦 ) ) ) ) |
36 |
27 9 35
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝐹 ∘ 𝑌 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝐹 ‘ ( 𝑌 ‘ 𝑦 ) ) ) ) |
37 |
21 31 32 34 36
|
offval2 |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( ( 𝐹 ∘ 𝑋 ) ∘f ⨣ ( 𝐹 ∘ 𝑌 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝐹 ‘ ( 𝑋 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 𝑌 ‘ 𝑦 ) ) ) ) ) |
38 |
13 30 37
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝐹 ∘ ( 𝑋 ∘f + 𝑌 ) ) = ( ( 𝐹 ∘ 𝑋 ) ∘f ⨣ ( 𝐹 ∘ 𝑌 ) ) ) |