Metamath Proof Explorer


Theorem ringvcl

Description: Tuple-wise multiplication closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses ringvcl.b 𝐵 = ( Base ‘ 𝑅 )
ringvcl.t · = ( .r𝑅 )
Assertion ringvcl ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( 𝐵m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵m 𝐼 ) ) → ( 𝑋f · 𝑌 ) ∈ ( 𝐵m 𝐼 ) )

Proof

Step Hyp Ref Expression
1 ringvcl.b 𝐵 = ( Base ‘ 𝑅 )
2 ringvcl.t · = ( .r𝑅 )
3 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
4 3 ringmgp ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
5 3 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
6 3 2 mgpplusg · = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
7 5 6 mndvcl ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑋 ∈ ( 𝐵m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵m 𝐼 ) ) → ( 𝑋f · 𝑌 ) ∈ ( 𝐵m 𝐼 ) )
8 4 7 syl3an1 ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( 𝐵m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵m 𝐼 ) ) → ( 𝑋f · 𝑌 ) ∈ ( 𝐵m 𝐼 ) )