| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsco2rhm.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐴 ) |
| 2 |
|
pwsco2rhm.z |
⊢ 𝑍 = ( 𝑆 ↑s 𝐴 ) |
| 3 |
|
pwsco2rhm.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 4 |
|
pwsco2rhm.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
pwsco2rhm.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 6 |
|
rhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 8 |
1
|
pwsring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉 ) → 𝑌 ∈ Ring ) |
| 9 |
7 4 8
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
| 10 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) |
| 11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 12 |
2
|
pwsring |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝐴 ∈ 𝑉 ) → 𝑍 ∈ Ring ) |
| 13 |
11 4 12
|
syl2anc |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
| 14 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 15 |
5 14
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 16 |
|
ghmmhm |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 18 |
1 2 3 4 17
|
pwsco2mhm |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 MndHom 𝑍 ) ) |
| 19 |
|
ringgrp |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) |
| 20 |
9 19
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| 21 |
|
ringgrp |
⊢ ( 𝑍 ∈ Ring → 𝑍 ∈ Grp ) |
| 22 |
13 21
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ Grp ) |
| 23 |
|
ghmmhmb |
⊢ ( ( 𝑌 ∈ Grp ∧ 𝑍 ∈ Grp ) → ( 𝑌 GrpHom 𝑍 ) = ( 𝑌 MndHom 𝑍 ) ) |
| 24 |
20 22 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 GrpHom 𝑍 ) = ( 𝑌 MndHom 𝑍 ) ) |
| 25 |
18 24
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 GrpHom 𝑍 ) ) |
| 26 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) = ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) |
| 27 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) = ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) |
| 28 |
|
eqid |
⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) |
| 29 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 30 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
| 31 |
29 30
|
rhmmhm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
| 32 |
5 31
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
| 33 |
26 27 28 4 32
|
pwsco2mhm |
⊢ ( 𝜑 → ( 𝑔 ∈ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) MndHom ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ) |
| 34 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 35 |
1 34
|
pwsbas |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = ( Base ‘ 𝑌 ) ) |
| 36 |
7 4 35
|
syl2anc |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = ( Base ‘ 𝑌 ) ) |
| 37 |
36 3
|
eqtr4di |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = 𝐵 ) |
| 38 |
29
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 39 |
7 38
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 40 |
29 34
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 41 |
26 40
|
pwsbas |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
| 42 |
39 4 41
|
syl2anc |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
| 43 |
37 42
|
eqtr3d |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
| 44 |
43
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) = ( 𝑔 ∈ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ↦ ( 𝐹 ∘ 𝑔 ) ) ) |
| 45 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) |
| 46 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ) |
| 47 |
|
eqid |
⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) |
| 48 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) |
| 49 |
|
eqid |
⊢ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( mulGrp ‘ 𝑌 ) ) |
| 50 |
|
eqid |
⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) |
| 51 |
1 29 26 47 48 28 49 50
|
pwsmgp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) ) |
| 52 |
7 4 51
|
syl2anc |
⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) ) |
| 53 |
52
|
simpld |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
| 54 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
| 55 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) |
| 56 |
|
eqid |
⊢ ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) |
| 57 |
|
eqid |
⊢ ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( mulGrp ‘ 𝑍 ) ) |
| 58 |
|
eqid |
⊢ ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) |
| 59 |
2 30 27 54 55 56 57 58
|
pwsmgp |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ) ) |
| 60 |
11 4 59
|
syl2anc |
⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ) ) |
| 61 |
60
|
simpld |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ) |
| 62 |
52
|
simprd |
⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
| 63 |
62
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) 𝑦 ) ) |
| 64 |
60
|
simprd |
⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ) |
| 65 |
64
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑍 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) 𝑦 ) ) |
| 66 |
45 46 53 61 63 65
|
mhmpropd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑌 ) MndHom ( mulGrp ‘ 𝑍 ) ) = ( ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) MndHom ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ) |
| 67 |
33 44 66
|
3eltr4d |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( ( mulGrp ‘ 𝑌 ) MndHom ( mulGrp ‘ 𝑍 ) ) ) |
| 68 |
25 67
|
jca |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 GrpHom 𝑍 ) ∧ ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( ( mulGrp ‘ 𝑌 ) MndHom ( mulGrp ‘ 𝑍 ) ) ) ) |
| 69 |
47 54
|
isrhm |
⊢ ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 RingHom 𝑍 ) ↔ ( ( 𝑌 ∈ Ring ∧ 𝑍 ∈ Ring ) ∧ ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 GrpHom 𝑍 ) ∧ ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( ( mulGrp ‘ 𝑌 ) MndHom ( mulGrp ‘ 𝑍 ) ) ) ) ) |
| 70 |
9 13 68 69
|
syl21anbrc |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 RingHom 𝑍 ) ) |