Step |
Hyp |
Ref |
Expression |
1 |
|
mhmpropd.a |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐽 ) ) |
2 |
|
mhmpropd.b |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝐾 ) ) |
3 |
|
mhmpropd.c |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
4 |
|
mhmpropd.d |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝑀 ) ) |
5 |
|
mhmpropd.e |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
6 |
|
mhmpropd.f |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
7 |
5
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) |
8 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) |
9 |
|
ffvelrn |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) |
10 |
|
ffvelrn |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) |
11 |
9 10
|
anim12dan |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) ) |
12 |
6
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 ) ) |
14 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ↔ ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) ) |
17 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) ↔ ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
19 |
15 18
|
cbvral2vw |
⊢ ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ↔ ∀ 𝑤 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) |
20 |
12 19
|
sylib |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) |
21 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 ) ) |
22 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) ) |
23 |
21 22
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ↔ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
24 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) |
25 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) |
26 |
24 25
|
eqeq12d |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) ↔ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
27 |
23 26
|
rspc2va |
⊢ ( ( ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) ∧ ∀ 𝑤 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) |
28 |
11 20 27
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) |
29 |
28
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) |
30 |
8 29
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
31 |
30
|
2ralbidva |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
32 |
31
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
33 |
|
raleq |
⊢ ( 𝐵 = ( Base ‘ 𝐽 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
34 |
33
|
raleqbi1dv |
⊢ ( 𝐵 = ( Base ‘ 𝐽 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
35 |
1 34
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
37 |
|
raleq |
⊢ ( 𝐵 = ( Base ‘ 𝐿 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
38 |
37
|
raleqbi1dv |
⊢ ( 𝐵 = ( Base ‘ 𝐿 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
39 |
3 38
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
41 |
32 36 40
|
3bitr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
42 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → 𝐵 = ( Base ‘ 𝐽 ) ) |
43 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → 𝐵 = ( Base ‘ 𝐿 ) ) |
44 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
45 |
42 43 44
|
grpidpropd |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( 0g ‘ 𝐽 ) = ( 0g ‘ 𝐿 ) ) |
46 |
45
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( 𝑓 ‘ ( 0g ‘ 𝐽 ) ) = ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) ) |
47 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → 𝐶 = ( Base ‘ 𝐾 ) ) |
48 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → 𝐶 = ( Base ‘ 𝑀 ) ) |
49 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
50 |
47 48 49
|
grpidpropd |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝑀 ) ) |
51 |
46 50
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( ( 𝑓 ‘ ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐾 ) ↔ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ) |
52 |
41 51
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( ( ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐾 ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ) ) |
53 |
52
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) → ( ( ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐾 ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ) ) |
54 |
53
|
pm5.32da |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ) → ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐾 ) ) ) ↔ ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ) ) ) |
55 |
1 2
|
feq23d |
⊢ ( 𝜑 → ( 𝑓 : 𝐵 ⟶ 𝐶 ↔ 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ) → ( 𝑓 : 𝐵 ⟶ 𝐶 ↔ 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) ) |
57 |
56
|
anbi1d |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ) → ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐾 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐾 ) ) ) ) ) |
58 |
3 4
|
feq23d |
⊢ ( 𝜑 → ( 𝑓 : 𝐵 ⟶ 𝐶 ↔ 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ) → ( 𝑓 : 𝐵 ⟶ 𝐶 ↔ 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ) ) |
60 |
59
|
anbi1d |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ) → ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ) ) ) |
61 |
54 57 60
|
3bitr3d |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ) → ( ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐾 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ) ) ) |
62 |
|
3anass |
⊢ ( ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐾 ) ) ↔ ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐾 ) ) ) ) |
63 |
|
3anass |
⊢ ( ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ↔ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ) ) |
64 |
61 62 63
|
3bitr4g |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ) → ( ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐾 ) ) ↔ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ) ) |
65 |
64
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐾 ) ) ) ↔ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ) ) ) |
66 |
1 3 5
|
mndpropd |
⊢ ( 𝜑 → ( 𝐽 ∈ Mnd ↔ 𝐿 ∈ Mnd ) ) |
67 |
2 4 6
|
mndpropd |
⊢ ( 𝜑 → ( 𝐾 ∈ Mnd ↔ 𝑀 ∈ Mnd ) ) |
68 |
66 67
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ↔ ( 𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd ) ) ) |
69 |
68
|
anbi1d |
⊢ ( 𝜑 → ( ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ) ↔ ( ( 𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ) ) ) |
70 |
65 69
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐾 ) ) ) ↔ ( ( 𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ) ) ) |
71 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
72 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
73 |
|
eqid |
⊢ ( +g ‘ 𝐽 ) = ( +g ‘ 𝐽 ) |
74 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
75 |
|
eqid |
⊢ ( 0g ‘ 𝐽 ) = ( 0g ‘ 𝐽 ) |
76 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
77 |
71 72 73 74 75 76
|
ismhm |
⊢ ( 𝑓 ∈ ( 𝐽 MndHom 𝐾 ) ↔ ( ( 𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd ) ∧ ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐾 ) ) ) ) |
78 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
79 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
80 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
81 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
82 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
83 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
84 |
78 79 80 81 82 83
|
ismhm |
⊢ ( 𝑓 ∈ ( 𝐿 MndHom 𝑀 ) ↔ ( ( 𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) = ( 0g ‘ 𝑀 ) ) ) ) |
85 |
70 77 84
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐽 MndHom 𝐾 ) ↔ 𝑓 ∈ ( 𝐿 MndHom 𝑀 ) ) ) |
86 |
85
|
eqrdv |
⊢ ( 𝜑 → ( 𝐽 MndHom 𝐾 ) = ( 𝐿 MndHom 𝑀 ) ) |