Step |
Hyp |
Ref |
Expression |
1 |
|
pwsco2mhm.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐴 ) |
2 |
|
pwsco2mhm.z |
⊢ 𝑍 = ( 𝑆 ↑s 𝐴 ) |
3 |
|
pwsco2mhm.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
4 |
|
pwsco2mhm.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
pwsco2mhm.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) |
6 |
|
mhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝑅 ∈ Mnd ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
8 |
1
|
pwsmnd |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → 𝑌 ∈ Mnd ) |
9 |
7 4 8
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |
10 |
|
mhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝑆 ∈ Mnd ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
12 |
2
|
pwsmnd |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → 𝑍 ∈ Mnd ) |
13 |
11 4 12
|
syl2anc |
⊢ ( 𝜑 → 𝑍 ∈ Mnd ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
16 |
14 15
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
17 |
5 16
|
syl |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
18 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝑅 ∈ Mnd ) |
19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝐴 ∈ 𝑉 ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ 𝐵 ) |
21 |
1 14 3 18 19 20
|
pwselbas |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
22 |
|
fco |
⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ 𝑔 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝐹 ∘ 𝑔 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) |
23 |
17 21 22
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( 𝐹 ∘ 𝑔 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
25 |
2 15 24
|
pwselbasb |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐹 ∘ 𝑔 ) ∈ ( Base ‘ 𝑍 ) ↔ ( 𝐹 ∘ 𝑔 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) |
26 |
11 19 25
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑔 ) ∈ ( Base ‘ 𝑍 ) ↔ ( 𝐹 ∘ 𝑔 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) |
27 |
23 26
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( 𝐹 ∘ 𝑔 ) ∈ ( Base ‘ 𝑍 ) ) |
28 |
27
|
fmpttd |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) : 𝐵 ⟶ ( Base ‘ 𝑍 ) ) |
29 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) |
31 |
29 6
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑅 ∈ Mnd ) |
32 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐴 ∈ 𝑉 ) |
33 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
34 |
1 14 3 31 32 33
|
pwselbas |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
35 |
34
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ) |
36 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
37 |
1 14 3 31 32 36
|
pwselbas |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
38 |
37
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ) |
39 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
40 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
41 |
14 39 40
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) |
42 |
30 35 38 41
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) |
43 |
42
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
44 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ∈ V ) |
45 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ∈ V ) |
46 |
34
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 = ( 𝑤 ∈ 𝐴 ↦ ( 𝑥 ‘ 𝑤 ) ) ) |
47 |
29 16
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
48 |
47
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 = ( 𝑧 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
49 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑥 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ) |
50 |
35 46 48 49
|
fmptco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ 𝑥 ) = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ) ) |
51 |
37
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 = ( 𝑤 ∈ 𝐴 ↦ ( 𝑦 ‘ 𝑤 ) ) ) |
52 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑦 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) |
53 |
38 51 48 52
|
fmptco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ 𝑦 ) = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) |
54 |
32 44 45 50 53
|
offval2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ∘ 𝑥 ) ∘f ( +g ‘ 𝑆 ) ( 𝐹 ∘ 𝑦 ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
55 |
43 54
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) = ( ( 𝐹 ∘ 𝑥 ) ∘f ( +g ‘ 𝑆 ) ( 𝐹 ∘ 𝑦 ) ) ) |
56 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → 𝑅 ∈ Mnd ) |
57 |
14 39
|
mndcl |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ∈ ( Base ‘ 𝑅 ) ) |
58 |
56 35 38 57
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ∈ ( Base ‘ 𝑅 ) ) |
59 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
60 |
1 3 31 32 33 36 39 59
|
pwsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ) |
61 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) ∈ V ) |
62 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑦 ‘ 𝑤 ) ∈ V ) |
63 |
32 61 62 46 51
|
offval2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) |
64 |
60 63
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) |
65 |
|
fveq2 |
⊢ ( 𝑧 = ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) |
66 |
58 64 48 65
|
fmptco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
67 |
29 10
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ Mnd ) |
68 |
|
fco |
⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ 𝑥 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝐹 ∘ 𝑥 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) |
69 |
47 34 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ 𝑥 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) |
70 |
2 15 24
|
pwselbasb |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐹 ∘ 𝑥 ) ∈ ( Base ‘ 𝑍 ) ↔ ( 𝐹 ∘ 𝑥 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) |
71 |
67 32 70
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ∘ 𝑥 ) ∈ ( Base ‘ 𝑍 ) ↔ ( 𝐹 ∘ 𝑥 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) |
72 |
69 71
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ 𝑥 ) ∈ ( Base ‘ 𝑍 ) ) |
73 |
|
fco |
⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ 𝑦 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝐹 ∘ 𝑦 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) |
74 |
47 37 73
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ 𝑦 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) |
75 |
2 15 24
|
pwselbasb |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐹 ∘ 𝑦 ) ∈ ( Base ‘ 𝑍 ) ↔ ( 𝐹 ∘ 𝑦 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) |
76 |
67 32 75
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ∘ 𝑦 ) ∈ ( Base ‘ 𝑍 ) ↔ ( 𝐹 ∘ 𝑦 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) |
77 |
74 76
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ 𝑦 ) ∈ ( Base ‘ 𝑍 ) ) |
78 |
|
eqid |
⊢ ( +g ‘ 𝑍 ) = ( +g ‘ 𝑍 ) |
79 |
2 24 67 32 72 77 40 78
|
pwsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ∘ 𝑥 ) ( +g ‘ 𝑍 ) ( 𝐹 ∘ 𝑦 ) ) = ( ( 𝐹 ∘ 𝑥 ) ∘f ( +g ‘ 𝑆 ) ( 𝐹 ∘ 𝑦 ) ) ) |
80 |
55 66 79
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) = ( ( 𝐹 ∘ 𝑥 ) ( +g ‘ 𝑍 ) ( 𝐹 ∘ 𝑦 ) ) ) |
81 |
|
eqid |
⊢ ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) = ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) |
82 |
|
coeq2 |
⊢ ( 𝑔 = ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) ) |
83 |
3 59
|
mndcl |
⊢ ( ( 𝑌 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ∈ 𝐵 ) |
84 |
83
|
3expb |
⊢ ( ( 𝑌 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ∈ 𝐵 ) |
85 |
9 84
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ∈ 𝐵 ) |
86 |
|
coexg |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ∈ 𝐵 ) → ( 𝐹 ∘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) ∈ V ) |
87 |
5 85 86
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) ∈ V ) |
88 |
81 82 85 87
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) = ( 𝐹 ∘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) ) |
89 |
|
coeq2 |
⊢ ( 𝑔 = 𝑥 → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ 𝑥 ) ) |
90 |
81 89 33 72
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑥 ) = ( 𝐹 ∘ 𝑥 ) ) |
91 |
|
coeq2 |
⊢ ( 𝑔 = 𝑦 → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ 𝑦 ) ) |
92 |
81 91 36 77
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑦 ) = ( 𝐹 ∘ 𝑦 ) ) |
93 |
90 92
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑦 ) ) = ( ( 𝐹 ∘ 𝑥 ) ( +g ‘ 𝑍 ) ( 𝐹 ∘ 𝑦 ) ) ) |
94 |
80 88 93
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑦 ) ) ) |
95 |
94
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑦 ) ) ) |
96 |
|
coeq2 |
⊢ ( 𝑔 = ( 0g ‘ 𝑌 ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ( 0g ‘ 𝑌 ) ) ) |
97 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
98 |
3 97
|
mndidcl |
⊢ ( 𝑌 ∈ Mnd → ( 0g ‘ 𝑌 ) ∈ 𝐵 ) |
99 |
9 98
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑌 ) ∈ 𝐵 ) |
100 |
|
coexg |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ( 0g ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝐹 ∘ ( 0g ‘ 𝑌 ) ) ∈ V ) |
101 |
5 99 100
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 0g ‘ 𝑌 ) ) ∈ V ) |
102 |
81 96 99 101
|
fvmptd3 |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 0g ‘ 𝑌 ) ) = ( 𝐹 ∘ ( 0g ‘ 𝑌 ) ) ) |
103 |
17
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝑅 ) ) |
104 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
105 |
14 104
|
mndidcl |
⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
106 |
7 105
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
107 |
|
fcoconst |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ∘ ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) ) = ( 𝐴 × { ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) } ) ) |
108 |
103 106 107
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) ) = ( 𝐴 × { ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) } ) ) |
109 |
1 104
|
pws0g |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ 𝑌 ) ) |
110 |
7 4 109
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ 𝑌 ) ) |
111 |
110
|
coeq2d |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) ) = ( 𝐹 ∘ ( 0g ‘ 𝑌 ) ) ) |
112 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
113 |
104 112
|
mhm0 |
⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
114 |
5 113
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
115 |
114
|
sneqd |
⊢ ( 𝜑 → { ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) } = { ( 0g ‘ 𝑆 ) } ) |
116 |
115
|
xpeq2d |
⊢ ( 𝜑 → ( 𝐴 × { ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) } ) = ( 𝐴 × { ( 0g ‘ 𝑆 ) } ) ) |
117 |
108 111 116
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 0g ‘ 𝑌 ) ) = ( 𝐴 × { ( 0g ‘ 𝑆 ) } ) ) |
118 |
2 112
|
pws0g |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 × { ( 0g ‘ 𝑆 ) } ) = ( 0g ‘ 𝑍 ) ) |
119 |
11 4 118
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 × { ( 0g ‘ 𝑆 ) } ) = ( 0g ‘ 𝑍 ) ) |
120 |
102 117 119
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 0g ‘ 𝑌 ) ) = ( 0g ‘ 𝑍 ) ) |
121 |
28 95 120
|
3jca |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) : 𝐵 ⟶ ( Base ‘ 𝑍 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑦 ) ) ∧ ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 0g ‘ 𝑌 ) ) = ( 0g ‘ 𝑍 ) ) ) |
122 |
|
eqid |
⊢ ( 0g ‘ 𝑍 ) = ( 0g ‘ 𝑍 ) |
123 |
3 24 59 78 97 122
|
ismhm |
⊢ ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 MndHom 𝑍 ) ↔ ( ( 𝑌 ∈ Mnd ∧ 𝑍 ∈ Mnd ) ∧ ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) : 𝐵 ⟶ ( Base ‘ 𝑍 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑦 ) ) ∧ ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 0g ‘ 𝑌 ) ) = ( 0g ‘ 𝑍 ) ) ) ) |
124 |
9 13 121 123
|
syl21anbrc |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 MndHom 𝑍 ) ) |