Metamath Proof Explorer


Theorem pwsco2mhm

Description: Left composition with a monoid homomorphism yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pwsco2mhm.y Y=R𝑠A
pwsco2mhm.z Z=S𝑠A
pwsco2mhm.b B=BaseY
pwsco2mhm.a φAV
pwsco2mhm.f φFRMndHomS
Assertion pwsco2mhm φgBFgYMndHomZ

Proof

Step Hyp Ref Expression
1 pwsco2mhm.y Y=R𝑠A
2 pwsco2mhm.z Z=S𝑠A
3 pwsco2mhm.b B=BaseY
4 pwsco2mhm.a φAV
5 pwsco2mhm.f φFRMndHomS
6 mhmrcl1 FRMndHomSRMnd
7 5 6 syl φRMnd
8 1 pwsmnd RMndAVYMnd
9 7 4 8 syl2anc φYMnd
10 mhmrcl2 FRMndHomSSMnd
11 5 10 syl φSMnd
12 2 pwsmnd SMndAVZMnd
13 11 4 12 syl2anc φZMnd
14 eqid BaseR=BaseR
15 eqid BaseS=BaseS
16 14 15 mhmf FRMndHomSF:BaseRBaseS
17 5 16 syl φF:BaseRBaseS
18 7 adantr φgBRMnd
19 4 adantr φgBAV
20 simpr φgBgB
21 1 14 3 18 19 20 pwselbas φgBg:ABaseR
22 fco F:BaseRBaseSg:ABaseRFg:ABaseS
23 17 21 22 syl2an2r φgBFg:ABaseS
24 eqid BaseZ=BaseZ
25 2 15 24 pwselbasb SMndAVFgBaseZFg:ABaseS
26 11 19 25 syl2an2r φgBFgBaseZFg:ABaseS
27 23 26 mpbird φgBFgBaseZ
28 27 fmpttd φgBFg:BBaseZ
29 5 adantr φxByBFRMndHomS
30 29 adantr φxByBwAFRMndHomS
31 29 6 syl φxByBRMnd
32 4 adantr φxByBAV
33 simprl φxByBxB
34 1 14 3 31 32 33 pwselbas φxByBx:ABaseR
35 34 ffvelcdmda φxByBwAxwBaseR
36 simprr φxByByB
37 1 14 3 31 32 36 pwselbas φxByBy:ABaseR
38 37 ffvelcdmda φxByBwAywBaseR
39 eqid +R=+R
40 eqid +S=+S
41 14 39 40 mhmlin FRMndHomSxwBaseRywBaseRFxw+Ryw=Fxw+SFyw
42 30 35 38 41 syl3anc φxByBwAFxw+Ryw=Fxw+SFyw
43 42 mpteq2dva φxByBwAFxw+Ryw=wAFxw+SFyw
44 fvexd φxByBwAFxwV
45 fvexd φxByBwAFywV
46 34 feqmptd φxByBx=wAxw
47 29 16 syl φxByBF:BaseRBaseS
48 47 feqmptd φxByBF=zBaseRFz
49 fveq2 z=xwFz=Fxw
50 35 46 48 49 fmptco φxByBFx=wAFxw
51 37 feqmptd φxByBy=wAyw
52 fveq2 z=ywFz=Fyw
53 38 51 48 52 fmptco φxByBFy=wAFyw
54 32 44 45 50 53 offval2 φxByBFx+SfFy=wAFxw+SFyw
55 43 54 eqtr4d φxByBwAFxw+Ryw=Fx+SfFy
56 31 adantr φxByBwARMnd
57 14 39 mndcl RMndxwBaseRywBaseRxw+RywBaseR
58 56 35 38 57 syl3anc φxByBwAxw+RywBaseR
59 eqid +Y=+Y
60 1 3 31 32 33 36 39 59 pwsplusgval φxByBx+Yy=x+Rfy
61 fvexd φxByBwAxwV
62 fvexd φxByBwAywV
63 32 61 62 46 51 offval2 φxByBx+Rfy=wAxw+Ryw
64 60 63 eqtrd φxByBx+Yy=wAxw+Ryw
65 fveq2 z=xw+RywFz=Fxw+Ryw
66 58 64 48 65 fmptco φxByBFx+Yy=wAFxw+Ryw
67 29 10 syl φxByBSMnd
68 fco F:BaseRBaseSx:ABaseRFx:ABaseS
69 47 34 68 syl2anc φxByBFx:ABaseS
70 2 15 24 pwselbasb SMndAVFxBaseZFx:ABaseS
71 67 32 70 syl2anc φxByBFxBaseZFx:ABaseS
72 69 71 mpbird φxByBFxBaseZ
73 fco F:BaseRBaseSy:ABaseRFy:ABaseS
74 47 37 73 syl2anc φxByBFy:ABaseS
75 2 15 24 pwselbasb SMndAVFyBaseZFy:ABaseS
76 67 32 75 syl2anc φxByBFyBaseZFy:ABaseS
77 74 76 mpbird φxByBFyBaseZ
78 eqid +Z=+Z
79 2 24 67 32 72 77 40 78 pwsplusgval φxByBFx+ZFy=Fx+SfFy
80 55 66 79 3eqtr4d φxByBFx+Yy=Fx+ZFy
81 eqid gBFg=gBFg
82 coeq2 g=x+YyFg=Fx+Yy
83 3 59 mndcl YMndxByBx+YyB
84 83 3expb YMndxByBx+YyB
85 9 84 sylan φxByBx+YyB
86 coexg FRMndHomSx+YyBFx+YyV
87 5 85 86 syl2an2r φxByBFx+YyV
88 81 82 85 87 fvmptd3 φxByBgBFgx+Yy=Fx+Yy
89 coeq2 g=xFg=Fx
90 81 89 33 72 fvmptd3 φxByBgBFgx=Fx
91 coeq2 g=yFg=Fy
92 81 91 36 77 fvmptd3 φxByBgBFgy=Fy
93 90 92 oveq12d φxByBgBFgx+ZgBFgy=Fx+ZFy
94 80 88 93 3eqtr4d φxByBgBFgx+Yy=gBFgx+ZgBFgy
95 94 ralrimivva φxByBgBFgx+Yy=gBFgx+ZgBFgy
96 coeq2 g=0YFg=F0Y
97 eqid 0Y=0Y
98 3 97 mndidcl YMnd0YB
99 9 98 syl φ0YB
100 coexg FRMndHomS0YBF0YV
101 5 99 100 syl2anc φF0YV
102 81 96 99 101 fvmptd3 φgBFg0Y=F0Y
103 17 ffnd φFFnBaseR
104 eqid 0R=0R
105 14 104 mndidcl RMnd0RBaseR
106 7 105 syl φ0RBaseR
107 fcoconst FFnBaseR0RBaseRFA×0R=A×F0R
108 103 106 107 syl2anc φFA×0R=A×F0R
109 1 104 pws0g RMndAVA×0R=0Y
110 7 4 109 syl2anc φA×0R=0Y
111 110 coeq2d φFA×0R=F0Y
112 eqid 0S=0S
113 104 112 mhm0 FRMndHomSF0R=0S
114 5 113 syl φF0R=0S
115 114 sneqd φF0R=0S
116 115 xpeq2d φA×F0R=A×0S
117 108 111 116 3eqtr3d φF0Y=A×0S
118 2 112 pws0g SMndAVA×0S=0Z
119 11 4 118 syl2anc φA×0S=0Z
120 102 117 119 3eqtrd φgBFg0Y=0Z
121 28 95 120 3jca φgBFg:BBaseZxByBgBFgx+Yy=gBFgx+ZgBFgygBFg0Y=0Z
122 eqid 0Z=0Z
123 3 24 59 78 97 122 ismhm gBFgYMndHomZYMndZMndgBFg:BBaseZxByBgBFgx+Yy=gBFgx+ZgBFgygBFg0Y=0Z
124 9 13 121 123 syl21anbrc φgBFgYMndHomZ