| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmply1vr1.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | rhmply1vr1.q |  |-  Q = ( Poly1 ` S ) | 
						
							| 3 |  | rhmply1vr1.b |  |-  B = ( Base ` P ) | 
						
							| 4 |  | rhmply1vr1.f |  |-  F = ( p e. B |-> ( H o. p ) ) | 
						
							| 5 |  | rhmply1vr1.x |  |-  X = ( var1 ` R ) | 
						
							| 6 |  | rhmply1vr1.y |  |-  Y = ( var1 ` S ) | 
						
							| 7 |  | rhmply1vr1.h |  |-  ( ph -> H e. ( R RingHom S ) ) | 
						
							| 8 |  | coeq2 |  |-  ( p = X -> ( H o. p ) = ( H o. X ) ) | 
						
							| 9 |  | rhmrcl1 |  |-  ( H e. ( R RingHom S ) -> R e. Ring ) | 
						
							| 10 | 7 9 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 11 | 5 1 3 | vr1cl |  |-  ( R e. Ring -> X e. B ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> X e. B ) | 
						
							| 13 | 5 | fvexi |  |-  X e. _V | 
						
							| 14 | 13 | a1i |  |-  ( ph -> X e. _V ) | 
						
							| 15 | 7 14 | coexd |  |-  ( ph -> ( H o. X ) e. _V ) | 
						
							| 16 | 4 8 12 15 | fvmptd3 |  |-  ( ph -> ( F ` X ) = ( H o. X ) ) | 
						
							| 17 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 18 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 19 | 17 18 | rhmf |  |-  ( H e. ( R RingHom S ) -> H : ( Base ` R ) --> ( Base ` S ) ) | 
						
							| 20 | 7 19 | syl |  |-  ( ph -> H : ( Base ` R ) --> ( Base ` S ) ) | 
						
							| 21 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 22 | 17 21 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 23 | 10 22 | syl |  |-  ( ph -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 24 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 25 | 17 24 | ring0cl |  |-  ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) | 
						
							| 26 | 10 25 | syl |  |-  ( ph -> ( 0g ` R ) e. ( Base ` R ) ) | 
						
							| 27 | 23 26 | ifcld |  |-  ( ph -> if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` R ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ph /\ f e. { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } ) -> if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` R ) ) | 
						
							| 29 | 20 28 | cofmpt |  |-  ( ph -> ( H o. ( f e. { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( f e. { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } |-> ( H ` if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) | 
						
							| 30 |  | fvif |  |-  ( H ` if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) = if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( H ` ( 1r ` R ) ) , ( H ` ( 0g ` R ) ) ) | 
						
							| 31 |  | eqid |  |-  ( 1r ` S ) = ( 1r ` S ) | 
						
							| 32 | 21 31 | rhm1 |  |-  ( H e. ( R RingHom S ) -> ( H ` ( 1r ` R ) ) = ( 1r ` S ) ) | 
						
							| 33 | 7 32 | syl |  |-  ( ph -> ( H ` ( 1r ` R ) ) = ( 1r ` S ) ) | 
						
							| 34 |  | rhmghm |  |-  ( H e. ( R RingHom S ) -> H e. ( R GrpHom S ) ) | 
						
							| 35 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 36 | 24 35 | ghmid |  |-  ( H e. ( R GrpHom S ) -> ( H ` ( 0g ` R ) ) = ( 0g ` S ) ) | 
						
							| 37 | 7 34 36 | 3syl |  |-  ( ph -> ( H ` ( 0g ` R ) ) = ( 0g ` S ) ) | 
						
							| 38 | 33 37 | ifeq12d |  |-  ( ph -> if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( H ` ( 1r ` R ) ) , ( H ` ( 0g ` R ) ) ) = if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` S ) , ( 0g ` S ) ) ) | 
						
							| 39 | 30 38 | eqtrid |  |-  ( ph -> ( H ` if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) = if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` S ) , ( 0g ` S ) ) ) | 
						
							| 40 | 39 | mpteq2dv |  |-  ( ph -> ( f e. { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } |-> ( H ` if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( f e. { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` S ) , ( 0g ` S ) ) ) ) | 
						
							| 41 | 29 40 | eqtrd |  |-  ( ph -> ( H o. ( f e. { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( f e. { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` S ) , ( 0g ` S ) ) ) ) | 
						
							| 42 |  | eqid |  |-  ( 1o mVar R ) = ( 1o mVar R ) | 
						
							| 43 |  | eqid |  |-  { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } | 
						
							| 44 |  | 1oex |  |-  1o e. _V | 
						
							| 45 | 44 | a1i |  |-  ( ph -> 1o e. _V ) | 
						
							| 46 |  | 0lt1o |  |-  (/) e. 1o | 
						
							| 47 | 46 | a1i |  |-  ( ph -> (/) e. 1o ) | 
						
							| 48 | 42 43 24 21 45 10 47 | mvrval |  |-  ( ph -> ( ( 1o mVar R ) ` (/) ) = ( f e. { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) | 
						
							| 49 | 48 | coeq2d |  |-  ( ph -> ( H o. ( ( 1o mVar R ) ` (/) ) ) = ( H o. ( f e. { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) | 
						
							| 50 |  | eqid |  |-  ( 1o mVar S ) = ( 1o mVar S ) | 
						
							| 51 |  | rhmrcl2 |  |-  ( H e. ( R RingHom S ) -> S e. Ring ) | 
						
							| 52 | 7 51 | syl |  |-  ( ph -> S e. Ring ) | 
						
							| 53 | 50 43 35 31 45 52 47 | mvrval |  |-  ( ph -> ( ( 1o mVar S ) ` (/) ) = ( f e. { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. 1o |-> if ( y = (/) , 1 , 0 ) ) , ( 1r ` S ) , ( 0g ` S ) ) ) ) | 
						
							| 54 | 41 49 53 | 3eqtr4d |  |-  ( ph -> ( H o. ( ( 1o mVar R ) ` (/) ) ) = ( ( 1o mVar S ) ` (/) ) ) | 
						
							| 55 | 5 | vr1val |  |-  X = ( ( 1o mVar R ) ` (/) ) | 
						
							| 56 | 55 | coeq2i |  |-  ( H o. X ) = ( H o. ( ( 1o mVar R ) ` (/) ) ) | 
						
							| 57 | 6 | vr1val |  |-  Y = ( ( 1o mVar S ) ` (/) ) | 
						
							| 58 | 54 56 57 | 3eqtr4g |  |-  ( ph -> ( H o. X ) = Y ) | 
						
							| 59 | 16 58 | eqtrd |  |-  ( ph -> ( F ` X ) = Y ) |