| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1vscl.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ply1vscl.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | ply1vscl.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | ply1vscl.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 5 |  | ply1vscl.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 6 |  | ply1vscl.c | ⊢ ( 𝜑  →  𝐶  ∈  𝐾 ) | 
						
							| 7 |  | ply1vscl.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 | 1 2 | ply1bas | ⊢ 𝐵  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Scalar ‘ ( 1o  mPoly  𝑅 ) )  =  ( Scalar ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 10 |  | eqid | ⊢ ( 1o  mPoly  𝑅 )  =  ( 1o  mPoly  𝑅 ) | 
						
							| 11 | 1 10 4 | ply1vsca | ⊢  ·   =  (  ·𝑠  ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( 1o  mPoly  𝑅 ) ) )  =  ( Base ‘ ( Scalar ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 13 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  1o  ∈  V ) | 
						
							| 15 | 10 14 5 | mpllmodd | ⊢ ( 𝜑  →  ( 1o  mPoly  𝑅 )  ∈  LMod ) | 
						
							| 16 | 10 14 5 | mplsca | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ ( 1o  mPoly  𝑅 ) ) ) ) | 
						
							| 18 | 3 17 | eqtrid | ⊢ ( 𝜑  →  𝐾  =  ( Base ‘ ( Scalar ‘ ( 1o  mPoly  𝑅 ) ) ) ) | 
						
							| 19 | 6 18 | eleqtrd | ⊢ ( 𝜑  →  𝐶  ∈  ( Base ‘ ( Scalar ‘ ( 1o  mPoly  𝑅 ) ) ) ) | 
						
							| 20 | 8 9 11 12 15 19 7 | lmodvscld | ⊢ ( 𝜑  →  ( 𝐶  ·  𝑋 )  ∈  𝐵 ) |