Metamath Proof Explorer


Theorem aks5lem3a

Description: Lemma for AKS section 5. (Contributed by metakunt, 17-Jun-2025)

Ref Expression
Hypotheses aks5lema.1 φ K Field
aks5lema.2 P = chr K
aks5lema.3 φ P N P N
aks5lema.9 B = S / 𝑠 S ~ QG L
aks5lema.10 L = RSpan S R mulGrp S var 1 /N - S 1 S
aks5lema.11 φ R
aks5lema.14 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks5lema.15 S = Poly 1 /N
aks5lem3a.4 F = p Base Poly 1 /N G p
aks5lem3a.5 G = q Base /N ℤRHom K q
aks5lem3a.6 H = r Base Poly 1 K eval 1 K r M
aks5lem3a.7 φ M mulGrp K PrimRoots R
aks5lem3a.8 I = s Base B H F s
aks5lem3a.12 φ A
aks5lem3a.13 φ N mulGrp S var 1 /N + S algSc S ℤRHom /N A S ~ QG L = N mulGrp S var 1 /N + S algSc S ℤRHom /N A S ~ QG L
Assertion aks5lem3a φ N mulGrp K eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A M = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A N mulGrp K M

Proof

Step Hyp Ref Expression
1 aks5lema.1 φ K Field
2 aks5lema.2 P = chr K
3 aks5lema.3 φ P N P N
4 aks5lema.9 B = S / 𝑠 S ~ QG L
5 aks5lema.10 L = RSpan S R mulGrp S var 1 /N - S 1 S
6 aks5lema.11 φ R
7 aks5lema.14 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
8 aks5lema.15 S = Poly 1 /N
9 aks5lem3a.4 F = p Base Poly 1 /N G p
10 aks5lem3a.5 G = q Base /N ℤRHom K q
11 aks5lem3a.6 H = r Base Poly 1 K eval 1 K r M
12 aks5lem3a.7 φ M mulGrp K PrimRoots R
13 aks5lem3a.8 I = s Base B H F s
14 aks5lem3a.12 φ A
15 aks5lem3a.13 φ N mulGrp S var 1 /N + S algSc S ℤRHom /N A S ~ QG L = N mulGrp S var 1 /N + S algSc S ℤRHom /N A S ~ QG L
16 1 fldcrngd φ K CRing
17 eqid mulGrp K = mulGrp K
18 17 crngmgp K CRing mulGrp K CMnd
19 16 18 syl φ mulGrp K CMnd
20 6 nnnn0d φ R 0
21 eqid mulGrp K = mulGrp K
22 19 20 21 isprimroot φ M mulGrp K PrimRoots R M Base mulGrp K R mulGrp K M = 0 mulGrp K d 0 d mulGrp K M = 0 mulGrp K R d
23 12 22 mpbid φ M Base mulGrp K R mulGrp K M = 0 mulGrp K d 0 d mulGrp K M = 0 mulGrp K R d
24 23 simp1d φ M Base mulGrp K
25 eqid Base K = Base K
26 17 25 mgpbas Base K = Base mulGrp K
27 26 eqcomi Base mulGrp K = Base K
28 24 27 eleqtrdi φ M Base K
29 1 2 3 9 10 11 28 aks5lem1 φ H F Poly 1 /N RingHom K
30 eqid mulGrp Poly 1 /N = mulGrp Poly 1 /N
31 30 17 rhmmhm H F Poly 1 /N RingHom K H F mulGrp Poly 1 /N MndHom mulGrp K
32 29 31 syl φ H F mulGrp Poly 1 /N MndHom mulGrp K
33 3 simp2d φ N
34 33 nnnn0d φ N 0
35 eqid Base Poly 1 /N = Base Poly 1 /N
36 eqid + Poly 1 /N = + Poly 1 /N
37 eqid /N = /N
38 37 zncrng N 0 /N CRing
39 34 38 syl φ /N CRing
40 eqid Poly 1 /N = Poly 1 /N
41 40 ply1crng /N CRing Poly 1 /N CRing
42 39 41 syl φ Poly 1 /N CRing
43 42 crngringd φ Poly 1 /N Ring
44 ringgrp Poly 1 /N Ring Poly 1 /N Grp
45 43 44 syl φ Poly 1 /N Grp
46 39 crngringd φ /N Ring
47 eqid var 1 /N = var 1 /N
48 47 40 35 vr1cl /N Ring var 1 /N Base Poly 1 /N
49 46 48 syl φ var 1 /N Base Poly 1 /N
50 eqid algSc Poly 1 /N = algSc Poly 1 /N
51 eqid ℤRHom Poly 1 /N = ℤRHom Poly 1 /N
52 eqid ℤRHom /N = ℤRHom /N
53 40 50 51 52 39 14 ply1asclzrhval φ algSc Poly 1 /N ℤRHom /N A = ℤRHom Poly 1 /N A
54 51 zrhrhm Poly 1 /N Ring ℤRHom Poly 1 /N ring RingHom Poly 1 /N
55 zringbas = Base ring
56 55 35 rhmf ℤRHom Poly 1 /N ring RingHom Poly 1 /N ℤRHom Poly 1 /N : Base Poly 1 /N
57 54 56 syl Poly 1 /N Ring ℤRHom Poly 1 /N : Base Poly 1 /N
58 43 57 syl φ ℤRHom Poly 1 /N : Base Poly 1 /N
59 58 14 ffvelcdmd φ ℤRHom Poly 1 /N A Base Poly 1 /N
60 53 59 eqeltrd φ algSc Poly 1 /N ℤRHom /N A Base Poly 1 /N
61 35 36 45 49 60 grpcld φ var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Base Poly 1 /N
62 30 35 mgpbas Base Poly 1 /N = Base mulGrp Poly 1 /N
63 eqid mulGrp Poly 1 /N = mulGrp Poly 1 /N
64 62 63 21 mhmmulg H F mulGrp Poly 1 /N MndHom mulGrp K N 0 var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Base Poly 1 /N H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = N mulGrp K H F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
65 32 34 61 64 syl3anc φ H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = N mulGrp K H F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
66 eqid Poly 1 K = Poly 1 K
67 16 crngringd φ K Ring
68 2 eqcomi chr K = P
69 3 simp1d φ P
70 prmnn P P
71 69 70 syl φ P
72 71 nnzd φ P
73 68 72 eqeltrid φ chr K
74 68 a1i φ chr K = P
75 3 simp3d φ P N
76 74 75 eqbrtrd φ chr K N
77 67 33 73 76 37 10 zndvdchrrhm φ G /N RingHom K
78 40 66 35 9 77 rhmply1 φ F Poly 1 /N RingHom Poly 1 K
79 eqid Base Poly 1 K = Base Poly 1 K
80 35 79 rhmf F Poly 1 /N RingHom Poly 1 K F : Base Poly 1 /N Base Poly 1 K
81 78 80 syl φ F : Base Poly 1 /N Base Poly 1 K
82 81 61 fvco3d φ H F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = H F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
83 11 a1i φ H = r Base Poly 1 K eval 1 K r M
84 simpr φ r = F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A r = F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
85 84 fveq2d φ r = F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A eval 1 K r = eval 1 K F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
86 85 fveq1d φ r = F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A eval 1 K r M = eval 1 K F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A M
87 81 61 ffvelcdmd φ F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Base Poly 1 K
88 fvexd φ eval 1 K F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A M V
89 83 86 87 88 fvmptd φ H F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = eval 1 K F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A M
90 rhmghm F Poly 1 /N RingHom Poly 1 K F Poly 1 /N GrpHom Poly 1 K
91 78 90 syl φ F Poly 1 /N GrpHom Poly 1 K
92 eqid + Poly 1 K = + Poly 1 K
93 35 36 92 ghmlin F Poly 1 /N GrpHom Poly 1 K var 1 /N Base Poly 1 /N algSc Poly 1 /N ℤRHom /N A Base Poly 1 /N F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = F var 1 /N + Poly 1 K F algSc Poly 1 /N ℤRHom /N A
94 91 49 60 93 syl3anc φ F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = F var 1 /N + Poly 1 K F algSc Poly 1 /N ℤRHom /N A
95 eqid var 1 K = var 1 K
96 40 66 35 9 47 95 77 rhmply1vr1 φ F var 1 /N = var 1 K
97 53 fveq2d φ F algSc Poly 1 /N ℤRHom /N A = F ℤRHom Poly 1 /N A
98 eqid ℤRHom Poly 1 K = ℤRHom Poly 1 K
99 78 14 51 98 rhmzrhval φ F ℤRHom Poly 1 /N A = ℤRHom Poly 1 K A
100 97 99 eqtrd φ F algSc Poly 1 /N ℤRHom /N A = ℤRHom Poly 1 K A
101 eqid algSc Poly 1 K = algSc Poly 1 K
102 eqid ℤRHom K = ℤRHom K
103 66 101 98 102 16 14 ply1asclzrhval φ algSc Poly 1 K ℤRHom K A = ℤRHom Poly 1 K A
104 100 103 eqtr4d φ F algSc Poly 1 /N ℤRHom /N A = algSc Poly 1 K ℤRHom K A
105 96 104 oveq12d φ F var 1 /N + Poly 1 K F algSc Poly 1 /N ℤRHom /N A = var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A
106 94 105 eqtrd φ F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A
107 106 fveq2d φ eval 1 K F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A
108 107 fveq1d φ eval 1 K F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A M = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A M
109 89 108 eqtrd φ H F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A M
110 82 109 eqtrd φ H F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A M
111 110 oveq2d φ N mulGrp K H F var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = N mulGrp K eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A M
112 65 111 eqtr2d φ N mulGrp K eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A M = H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
113 eceq1 u = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A u Poly 1 /N ~ QG L = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L
114 113 fveq2d u = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A I u Poly 1 /N ~ QG L = I N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L
115 fveq2 u = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A H F u = H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
116 114 115 eqeq12d u = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A I u Poly 1 /N ~ QG L = H F u I N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L = H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
117 8 oveq1i S ~ QG L = Poly 1 /N ~ QG L
118 8 117 oveq12i S / 𝑠 S ~ QG L = Poly 1 /N / 𝑠 Poly 1 /N ~ QG L
119 4 118 eqtri B = Poly 1 /N / 𝑠 Poly 1 /N ~ QG L
120 8 fveq2i RSpan S = RSpan Poly 1 /N
121 8 fveq2i mulGrp S = mulGrp Poly 1 /N
122 121 fveq2i mulGrp S = mulGrp Poly 1 /N
123 122 oveqi R mulGrp S var 1 /N = R mulGrp Poly 1 /N var 1 /N
124 8 fveq2i 1 S = 1 Poly 1 /N
125 8 fveq2i - S = - Poly 1 /N
126 123 124 125 oveq123i R mulGrp S var 1 /N - S 1 S = R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N
127 126 sneqi R mulGrp S var 1 /N - S 1 S = R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N
128 120 127 fveq12i RSpan S R mulGrp S var 1 /N - S 1 S = RSpan Poly 1 /N R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N
129 5 128 eqtri L = RSpan Poly 1 /N R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N
130 1 2 3 9 10 11 12 13 119 129 6 aks5lem2 φ I B RingHom K u Base Poly 1 /N I u Poly 1 /N ~ QG L = H F u
131 130 simprd φ u Base Poly 1 /N I u Poly 1 /N ~ QG L = H F u
132 30 ringmgp Poly 1 /N Ring mulGrp Poly 1 /N Mnd
133 43 132 syl φ mulGrp Poly 1 /N Mnd
134 62 63 133 34 61 mulgnn0cld φ N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Base Poly 1 /N
135 116 131 134 rspcdva φ I N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L = H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
136 135 eqcomd φ H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = I N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L
137 8 eqcomi Poly 1 /N = S
138 137 a1i φ Poly 1 /N = S
139 138 fveq2d φ mulGrp Poly 1 /N = mulGrp S
140 139 fveq2d φ mulGrp Poly 1 /N = mulGrp S
141 eqidd φ N = N
142 138 fveq2d φ + Poly 1 /N = + S
143 eqidd φ var 1 /N = var 1 /N
144 138 fveq2d φ algSc Poly 1 /N = algSc S
145 144 fveq1d φ algSc Poly 1 /N ℤRHom /N A = algSc S ℤRHom /N A
146 142 143 145 oveq123d φ var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = var 1 /N + S algSc S ℤRHom /N A
147 140 141 146 oveq123d φ N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = N mulGrp S var 1 /N + S algSc S ℤRHom /N A
148 147 eceq1d φ N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L = N mulGrp S var 1 /N + S algSc S ℤRHom /N A Poly 1 /N ~ QG L
149 138 oveq1d φ Poly 1 /N ~ QG L = S ~ QG L
150 149 eceq2d φ N mulGrp S var 1 /N + S algSc S ℤRHom /N A Poly 1 /N ~ QG L = N mulGrp S var 1 /N + S algSc S ℤRHom /N A S ~ QG L
151 148 150 eqtrd φ N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L = N mulGrp S var 1 /N + S algSc S ℤRHom /N A S ~ QG L
152 eqcom Poly 1 /N = S S = Poly 1 /N
153 152 imbi2i φ Poly 1 /N = S φ S = Poly 1 /N
154 138 153 mpbi φ S = Poly 1 /N
155 154 fveq2d φ + S = + Poly 1 /N
156 154 fveq2d φ mulGrp S = mulGrp Poly 1 /N
157 156 fveq2d φ mulGrp S = mulGrp Poly 1 /N
158 157 oveqd φ N mulGrp S var 1 /N = N mulGrp Poly 1 /N var 1 /N
159 154 fveq2d φ algSc S = algSc Poly 1 /N
160 159 fveq1d φ algSc S ℤRHom /N A = algSc Poly 1 /N ℤRHom /N A
161 155 158 160 oveq123d φ N mulGrp S var 1 /N + S algSc S ℤRHom /N A = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
162 161 eceq1d φ N mulGrp S var 1 /N + S algSc S ℤRHom /N A S ~ QG L = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A S ~ QG L
163 149 eqcomd φ S ~ QG L = Poly 1 /N ~ QG L
164 163 eceq2d φ N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A S ~ QG L = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L
165 162 164 eqtrd φ N mulGrp S var 1 /N + S algSc S ℤRHom /N A S ~ QG L = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L
166 151 15 165 3eqtrd φ N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L
167 166 fveq2d φ I N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L = I N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L
168 eceq1 u = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A u Poly 1 /N ~ QG L = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L
169 168 fveq2d u = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A I u Poly 1 /N ~ QG L = I N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L
170 fveq2 u = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A H F u = H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
171 169 170 eqeq12d u = N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A I u Poly 1 /N ~ QG L = H F u I N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L = H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
172 62 63 133 34 49 mulgnn0cld φ N mulGrp Poly 1 /N var 1 /N Base Poly 1 /N
173 35 36 45 172 60 grpcld φ N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Base Poly 1 /N
174 171 131 173 rspcdva φ I N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Poly 1 /N ~ QG L = H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
175 136 167 174 3eqtrd φ H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
176 81 173 fvco3d φ H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
177 simpr φ r = F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A r = F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
178 177 fveq2d φ r = F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A eval 1 K r = eval 1 K F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A
179 178 fveq1d φ r = F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A eval 1 K r M = eval 1 K F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A M
180 81 173 ffvelcdmd φ F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A Base Poly 1 K
181 fvexd φ eval 1 K F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A M V
182 83 179 180 181 fvmptd φ H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = eval 1 K F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A M
183 35 36 92 ghmlin F Poly 1 /N GrpHom Poly 1 K N mulGrp Poly 1 /N var 1 /N Base Poly 1 /N algSc Poly 1 /N ℤRHom /N A Base Poly 1 /N F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = F N mulGrp Poly 1 /N var 1 /N + Poly 1 K F algSc Poly 1 /N ℤRHom /N A
184 91 172 60 183 syl3anc φ F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = F N mulGrp Poly 1 /N var 1 /N + Poly 1 K F algSc Poly 1 /N ℤRHom /N A
185 184 fveq2d φ eval 1 K F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = eval 1 K F N mulGrp Poly 1 /N var 1 /N + Poly 1 K F algSc Poly 1 /N ℤRHom /N A
186 185 fveq1d φ eval 1 K F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A M = eval 1 K F N mulGrp Poly 1 /N var 1 /N + Poly 1 K F algSc Poly 1 /N ℤRHom /N A M
187 eqid mulGrp Poly 1 K = mulGrp Poly 1 K
188 30 187 rhmmhm F Poly 1 /N RingHom Poly 1 K F mulGrp Poly 1 /N MndHom mulGrp Poly 1 K
189 78 188 syl φ F mulGrp Poly 1 /N MndHom mulGrp Poly 1 K
190 eqid mulGrp Poly 1 K = mulGrp Poly 1 K
191 62 63 190 mhmmulg F mulGrp Poly 1 /N MndHom mulGrp Poly 1 K N 0 var 1 /N Base Poly 1 /N F N mulGrp Poly 1 /N var 1 /N = N mulGrp Poly 1 K F var 1 /N
192 189 34 49 191 syl3anc φ F N mulGrp Poly 1 /N var 1 /N = N mulGrp Poly 1 K F var 1 /N
193 192 97 oveq12d φ F N mulGrp Poly 1 /N var 1 /N + Poly 1 K F algSc Poly 1 /N ℤRHom /N A = N mulGrp Poly 1 K F var 1 /N + Poly 1 K F ℤRHom Poly 1 /N A
194 193 fveq2d φ eval 1 K F N mulGrp Poly 1 /N var 1 /N + Poly 1 K F algSc Poly 1 /N ℤRHom /N A = eval 1 K N mulGrp Poly 1 K F var 1 /N + Poly 1 K F ℤRHom Poly 1 /N A
195 194 fveq1d φ eval 1 K F N mulGrp Poly 1 /N var 1 /N + Poly 1 K F algSc Poly 1 /N ℤRHom /N A M = eval 1 K N mulGrp Poly 1 K F var 1 /N + Poly 1 K F ℤRHom Poly 1 /N A M
196 96 oveq2d φ N mulGrp Poly 1 K F var 1 /N = N mulGrp Poly 1 K var 1 K
197 196 99 oveq12d φ N mulGrp Poly 1 K F var 1 /N + Poly 1 K F ℤRHom Poly 1 /N A = N mulGrp Poly 1 K var 1 K + Poly 1 K ℤRHom Poly 1 K A
198 197 fveq2d φ eval 1 K N mulGrp Poly 1 K F var 1 /N + Poly 1 K F ℤRHom Poly 1 /N A = eval 1 K N mulGrp Poly 1 K var 1 K + Poly 1 K ℤRHom Poly 1 K A
199 198 fveq1d φ eval 1 K N mulGrp Poly 1 K F var 1 /N + Poly 1 K F ℤRHom Poly 1 /N A M = eval 1 K N mulGrp Poly 1 K var 1 K + Poly 1 K ℤRHom Poly 1 K A M
200 eqid eval 1 K = eval 1 K
201 200 95 25 66 79 16 28 evl1vard φ var 1 K Base Poly 1 K eval 1 K var 1 K M = M
202 200 66 25 79 16 28 201 190 21 34 evl1expd φ N mulGrp Poly 1 K var 1 K Base Poly 1 K eval 1 K N mulGrp Poly 1 K var 1 K M = N mulGrp K M
203 66 ply1crng K CRing Poly 1 K CRing
204 16 203 syl φ Poly 1 K CRing
205 204 crngringd φ Poly 1 K Ring
206 98 zrhrhm Poly 1 K Ring ℤRHom Poly 1 K ring RingHom Poly 1 K
207 55 79 rhmf ℤRHom Poly 1 K ring RingHom Poly 1 K ℤRHom Poly 1 K : Base Poly 1 K
208 206 207 syl Poly 1 K Ring ℤRHom Poly 1 K : Base Poly 1 K
209 205 208 syl φ ℤRHom Poly 1 K : Base Poly 1 K
210 209 14 ffvelcdmd φ ℤRHom Poly 1 K A Base Poly 1 K
211 eqidd φ eval 1 K ℤRHom Poly 1 K A M = eval 1 K ℤRHom Poly 1 K A M
212 210 211 jca φ ℤRHom Poly 1 K A Base Poly 1 K eval 1 K ℤRHom Poly 1 K A M = eval 1 K ℤRHom Poly 1 K A M
213 eqid + K = + K
214 200 66 25 79 16 28 202 212 92 213 evl1addd φ N mulGrp Poly 1 K var 1 K + Poly 1 K ℤRHom Poly 1 K A Base Poly 1 K eval 1 K N mulGrp Poly 1 K var 1 K + Poly 1 K ℤRHom Poly 1 K A M = N mulGrp K M + K eval 1 K ℤRHom Poly 1 K A M
215 214 simprd φ eval 1 K N mulGrp Poly 1 K var 1 K + Poly 1 K ℤRHom Poly 1 K A M = N mulGrp K M + K eval 1 K ℤRHom Poly 1 K A M
216 102 zrhrhm K Ring ℤRHom K ring RingHom K
217 55 25 rhmf ℤRHom K ring RingHom K ℤRHom K : Base K
218 216 217 syl K Ring ℤRHom K : Base K
219 67 218 syl φ ℤRHom K : Base K
220 219 14 ffvelcdmd φ ℤRHom K A Base K
221 200 66 25 101 79 16 220 28 evl1scad φ algSc Poly 1 K ℤRHom K A Base Poly 1 K eval 1 K algSc Poly 1 K ℤRHom K A M = ℤRHom K A
222 221 simprd φ eval 1 K algSc Poly 1 K ℤRHom K A M = ℤRHom K A
223 222 eqcomd φ ℤRHom K A = eval 1 K algSc Poly 1 K ℤRHom K A M
224 103 fveq2d φ eval 1 K algSc Poly 1 K ℤRHom K A = eval 1 K ℤRHom Poly 1 K A
225 224 fveq1d φ eval 1 K algSc Poly 1 K ℤRHom K A M = eval 1 K ℤRHom Poly 1 K A M
226 223 225 eqtr2d φ eval 1 K ℤRHom Poly 1 K A M = ℤRHom K A
227 226 oveq2d φ N mulGrp K M + K eval 1 K ℤRHom Poly 1 K A M = N mulGrp K M + K ℤRHom K A
228 215 227 eqtrd φ eval 1 K N mulGrp Poly 1 K var 1 K + Poly 1 K ℤRHom Poly 1 K A M = N mulGrp K M + K ℤRHom K A
229 199 228 eqtrd φ eval 1 K N mulGrp Poly 1 K F var 1 /N + Poly 1 K F ℤRHom Poly 1 /N A M = N mulGrp K M + K ℤRHom K A
230 19 cmnmndd φ mulGrp K Mnd
231 26 21 230 34 28 mulgnn0cld φ N mulGrp K M Base K
232 200 95 25 66 79 16 231 evl1vard φ var 1 K Base Poly 1 K eval 1 K var 1 K N mulGrp K M = N mulGrp K M
233 200 66 25 101 79 16 220 231 evl1scad φ algSc Poly 1 K ℤRHom K A Base Poly 1 K eval 1 K algSc Poly 1 K ℤRHom K A N mulGrp K M = ℤRHom K A
234 200 66 25 79 16 231 232 233 92 213 evl1addd φ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A Base Poly 1 K eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A N mulGrp K M = N mulGrp K M + K ℤRHom K A
235 234 simprd φ eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A N mulGrp K M = N mulGrp K M + K ℤRHom K A
236 229 235 eqtr4d φ eval 1 K N mulGrp Poly 1 K F var 1 /N + Poly 1 K F ℤRHom Poly 1 /N A M = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A N mulGrp K M
237 195 236 eqtrd φ eval 1 K F N mulGrp Poly 1 /N var 1 /N + Poly 1 K F algSc Poly 1 /N ℤRHom /N A M = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A N mulGrp K M
238 186 237 eqtrd φ eval 1 K F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A M = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A N mulGrp K M
239 182 238 eqtrd φ H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A N mulGrp K M
240 176 239 eqtrd φ H F N mulGrp Poly 1 /N var 1 /N + Poly 1 /N algSc Poly 1 /N ℤRHom /N A = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A N mulGrp K M
241 112 175 240 3eqtrd φ N mulGrp K eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A M = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A N mulGrp K M