Metamath Proof Explorer


Theorem aks5lem1

Description: Section 5 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf. Construction of a ring homomorphism out of Zn X to K. (Contributed by metakunt, 7-Jun-2025)

Ref Expression
Hypotheses aks5lem1.1 φ K Field
aks5lem1.2 P = chr K
aks5lem1.3 φ P N P N
aks5lem1.4 F = p Base Poly 1 /N G p
aks5lem1.5 G = q Base /N ℤRHom K q
aks5lem1.6 H = r Base Poly 1 K eval 1 K r M
aks5lem1.7 φ M Base K
Assertion aks5lem1 φ H F Poly 1 /N RingHom K

Proof

Step Hyp Ref Expression
1 aks5lem1.1 φ K Field
2 aks5lem1.2 P = chr K
3 aks5lem1.3 φ P N P N
4 aks5lem1.4 F = p Base Poly 1 /N G p
5 aks5lem1.5 G = q Base /N ℤRHom K q
6 aks5lem1.6 H = r Base Poly 1 K eval 1 K r M
7 aks5lem1.7 φ M Base K
8 eqid eval 1 K = eval 1 K
9 eqid Poly 1 K = Poly 1 K
10 eqid Base K = Base K
11 eqid Base Poly 1 K = Base Poly 1 K
12 1 fldcrngd φ K CRing
13 8 9 10 11 12 7 6 evl1maprhm φ H Poly 1 K RingHom K
14 eqid Poly 1 /N = Poly 1 /N
15 eqid Base Poly 1 /N = Base Poly 1 /N
16 crngring K CRing K Ring
17 12 16 syl φ K Ring
18 3 simp2d φ N
19 2 eqcomi chr K = P
20 3 simp1d φ P
21 prmnn P P
22 20 21 syl φ P
23 22 nnzd φ P
24 19 23 eqeltrid φ chr K
25 3 simp3d φ P N
26 19 25 eqbrtrid φ chr K N
27 eqid /N = /N
28 17 18 24 26 27 5 zndvdchrrhm φ G /N RingHom K
29 14 9 15 4 28 rhmply1 φ F Poly 1 /N RingHom Poly 1 K
30 rhmco H Poly 1 K RingHom K F Poly 1 /N RingHom Poly 1 K H F Poly 1 /N RingHom K
31 13 29 30 syl2anc φ H F Poly 1 /N RingHom K