Step |
Hyp |
Ref |
Expression |
1 |
|
aks5lem1.1 |
|- ( ph -> K e. Field ) |
2 |
|
aks5lem1.2 |
|- P = ( chr ` K ) |
3 |
|
aks5lem1.3 |
|- ( ph -> ( P e. Prime /\ N e. NN /\ P || N ) ) |
4 |
|
aks5lem1.4 |
|- F = ( p e. ( Base ` ( Poly1 ` ( Z/nZ ` N ) ) ) |-> ( G o. p ) ) |
5 |
|
aks5lem1.5 |
|- G = ( q e. ( Base ` ( Z/nZ ` N ) ) |-> U. ( ( ZRHom ` K ) " q ) ) |
6 |
|
aks5lem1.6 |
|- H = ( r e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( eval1 ` K ) ` r ) ` M ) ) |
7 |
|
aks5lem1.7 |
|- ( ph -> M e. ( Base ` K ) ) |
8 |
|
eqid |
|- ( eval1 ` K ) = ( eval1 ` K ) |
9 |
|
eqid |
|- ( Poly1 ` K ) = ( Poly1 ` K ) |
10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
11 |
|
eqid |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) |
12 |
1
|
fldcrngd |
|- ( ph -> K e. CRing ) |
13 |
8 9 10 11 12 7 6
|
evl1maprhm |
|- ( ph -> H e. ( ( Poly1 ` K ) RingHom K ) ) |
14 |
|
eqid |
|- ( Poly1 ` ( Z/nZ ` N ) ) = ( Poly1 ` ( Z/nZ ` N ) ) |
15 |
|
eqid |
|- ( Base ` ( Poly1 ` ( Z/nZ ` N ) ) ) = ( Base ` ( Poly1 ` ( Z/nZ ` N ) ) ) |
16 |
|
crngring |
|- ( K e. CRing -> K e. Ring ) |
17 |
12 16
|
syl |
|- ( ph -> K e. Ring ) |
18 |
3
|
simp2d |
|- ( ph -> N e. NN ) |
19 |
2
|
eqcomi |
|- ( chr ` K ) = P |
20 |
3
|
simp1d |
|- ( ph -> P e. Prime ) |
21 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
22 |
20 21
|
syl |
|- ( ph -> P e. NN ) |
23 |
22
|
nnzd |
|- ( ph -> P e. ZZ ) |
24 |
19 23
|
eqeltrid |
|- ( ph -> ( chr ` K ) e. ZZ ) |
25 |
3
|
simp3d |
|- ( ph -> P || N ) |
26 |
19 25
|
eqbrtrid |
|- ( ph -> ( chr ` K ) || N ) |
27 |
|
eqid |
|- ( Z/nZ ` N ) = ( Z/nZ ` N ) |
28 |
17 18 24 26 27 5
|
zndvdchrrhm |
|- ( ph -> G e. ( ( Z/nZ ` N ) RingHom K ) ) |
29 |
14 9 15 4 28
|
rhmply1 |
|- ( ph -> F e. ( ( Poly1 ` ( Z/nZ ` N ) ) RingHom ( Poly1 ` K ) ) ) |
30 |
|
rhmco |
|- ( ( H e. ( ( Poly1 ` K ) RingHom K ) /\ F e. ( ( Poly1 ` ( Z/nZ ` N ) ) RingHom ( Poly1 ` K ) ) ) -> ( H o. F ) e. ( ( Poly1 ` ( Z/nZ ` N ) ) RingHom K ) ) |
31 |
13 29 30
|
syl2anc |
|- ( ph -> ( H o. F ) e. ( ( Poly1 ` ( Z/nZ ` N ) ) RingHom K ) ) |