| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1maprhm.q |
|- O = ( eval1 ` R ) |
| 2 |
|
evl1maprhm.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
evl1maprhm.b |
|- B = ( Base ` R ) |
| 4 |
|
evl1maprhm.u |
|- U = ( Base ` P ) |
| 5 |
|
evl1maprhm.r |
|- ( ph -> R e. CRing ) |
| 6 |
|
evl1maprhm.y |
|- ( ph -> X e. B ) |
| 7 |
|
evl1maprhm.f |
|- F = ( p e. U |-> ( ( O ` p ) ` X ) ) |
| 8 |
7
|
a1i |
|- ( ph -> F = ( p e. U |-> ( ( O ` p ) ` X ) ) ) |
| 9 |
|
ssidd |
|- ( ph -> ( Base ` R ) C_ ( Base ` R ) ) |
| 10 |
5
|
elexd |
|- ( ph -> R e. _V ) |
| 11 |
5
|
crngringd |
|- ( ph -> R e. Ring ) |
| 12 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 13 |
12
|
subrgid |
|- ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 14 |
11 13
|
syl |
|- ( ph -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 15 |
14
|
elexd |
|- ( ph -> ( Base ` R ) e. _V ) |
| 16 |
|
eqid |
|- ( R |`s ( Base ` R ) ) = ( R |`s ( Base ` R ) ) |
| 17 |
16 12
|
ressid2 |
|- ( ( ( Base ` R ) C_ ( Base ` R ) /\ R e. _V /\ ( Base ` R ) e. _V ) -> ( R |`s ( Base ` R ) ) = R ) |
| 18 |
9 10 15 17
|
syl3anc |
|- ( ph -> ( R |`s ( Base ` R ) ) = R ) |
| 19 |
|
eqcom |
|- ( ( R |`s ( Base ` R ) ) = R <-> R = ( R |`s ( Base ` R ) ) ) |
| 20 |
19
|
imbi2i |
|- ( ( ph -> ( R |`s ( Base ` R ) ) = R ) <-> ( ph -> R = ( R |`s ( Base ` R ) ) ) ) |
| 21 |
18 20
|
mpbi |
|- ( ph -> R = ( R |`s ( Base ` R ) ) ) |
| 22 |
21
|
fveq2d |
|- ( ph -> ( Poly1 ` R ) = ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |
| 23 |
2 22
|
eqtrid |
|- ( ph -> P = ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |
| 24 |
23
|
fveq2d |
|- ( ph -> ( Base ` P ) = ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) ) |
| 25 |
4 24
|
eqtrid |
|- ( ph -> U = ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) ) |
| 26 |
1 12
|
evl1fval1 |
|- O = ( R evalSub1 ( Base ` R ) ) |
| 27 |
26
|
a1i |
|- ( ph -> O = ( R evalSub1 ( Base ` R ) ) ) |
| 28 |
27
|
fveq1d |
|- ( ph -> ( O ` p ) = ( ( R evalSub1 ( Base ` R ) ) ` p ) ) |
| 29 |
28
|
fveq1d |
|- ( ph -> ( ( O ` p ) ` X ) = ( ( ( R evalSub1 ( Base ` R ) ) ` p ) ` X ) ) |
| 30 |
25 29
|
mpteq12dv |
|- ( ph -> ( p e. U |-> ( ( O ` p ) ` X ) ) = ( p e. ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |-> ( ( ( R evalSub1 ( Base ` R ) ) ` p ) ` X ) ) ) |
| 31 |
|
eqid |
|- ( R evalSub1 ( Base ` R ) ) = ( R evalSub1 ( Base ` R ) ) |
| 32 |
|
eqid |
|- ( Poly1 ` ( R |`s ( Base ` R ) ) ) = ( Poly1 ` ( R |`s ( Base ` R ) ) ) |
| 33 |
|
eqid |
|- ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) = ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |
| 34 |
6 3
|
eleqtrdi |
|- ( ph -> X e. ( Base ` R ) ) |
| 35 |
|
eqid |
|- ( p e. ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |-> ( ( ( R evalSub1 ( Base ` R ) ) ` p ) ` X ) ) = ( p e. ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |-> ( ( ( R evalSub1 ( Base ` R ) ) ` p ) ` X ) ) |
| 36 |
31 32 12 33 5 14 34 35
|
evls1maprhm |
|- ( ph -> ( p e. ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |-> ( ( ( R evalSub1 ( Base ` R ) ) ` p ) ` X ) ) e. ( ( Poly1 ` ( R |`s ( Base ` R ) ) ) RingHom R ) ) |
| 37 |
30 36
|
eqeltrd |
|- ( ph -> ( p e. U |-> ( ( O ` p ) ` X ) ) e. ( ( Poly1 ` ( R |`s ( Base ` R ) ) ) RingHom R ) ) |
| 38 |
2
|
a1i |
|- ( ph -> P = ( Poly1 ` R ) ) |
| 39 |
18
|
eqcomd |
|- ( ph -> R = ( R |`s ( Base ` R ) ) ) |
| 40 |
39
|
fveq2d |
|- ( ph -> ( Poly1 ` R ) = ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |
| 41 |
38 40
|
eqtr2d |
|- ( ph -> ( Poly1 ` ( R |`s ( Base ` R ) ) ) = P ) |
| 42 |
41
|
oveq1d |
|- ( ph -> ( ( Poly1 ` ( R |`s ( Base ` R ) ) ) RingHom R ) = ( P RingHom R ) ) |
| 43 |
37 42
|
eleqtrd |
|- ( ph -> ( p e. U |-> ( ( O ` p ) ` X ) ) e. ( P RingHom R ) ) |
| 44 |
8 43
|
eqeltrd |
|- ( ph -> F e. ( P RingHom R ) ) |