Step |
Hyp |
Ref |
Expression |
1 |
|
aks5lem1.1 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
2 |
|
aks5lem1.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks5lem1.3 |
⊢ ( 𝜑 → ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁 ) ) |
4 |
|
aks5lem1.4 |
⊢ 𝐹 = ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↦ ( 𝐺 ∘ 𝑝 ) ) |
5 |
|
aks5lem1.5 |
⊢ 𝐺 = ( 𝑞 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ∪ ( ( ℤRHom ‘ 𝐾 ) “ 𝑞 ) ) |
6 |
|
aks5lem1.6 |
⊢ 𝐻 = ( 𝑟 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑟 ) ‘ 𝑀 ) ) |
7 |
|
aks5lem1.7 |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ 𝐾 ) ) |
8 |
|
eqid |
⊢ ( eval1 ‘ 𝐾 ) = ( eval1 ‘ 𝐾 ) |
9 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
11 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
12 |
1
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
13 |
8 9 10 11 12 7 6
|
evl1maprhm |
⊢ ( 𝜑 → 𝐻 ∈ ( ( Poly1 ‘ 𝐾 ) RingHom 𝐾 ) ) |
14 |
|
eqid |
⊢ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
15 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
16 |
|
crngring |
⊢ ( 𝐾 ∈ CRing → 𝐾 ∈ Ring ) |
17 |
12 16
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
18 |
3
|
simp2d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
19 |
2
|
eqcomi |
⊢ ( chr ‘ 𝐾 ) = 𝑃 |
20 |
3
|
simp1d |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
21 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
23 |
22
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
24 |
19 23
|
eqeltrid |
⊢ ( 𝜑 → ( chr ‘ 𝐾 ) ∈ ℤ ) |
25 |
3
|
simp3d |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
26 |
19 25
|
eqbrtrid |
⊢ ( 𝜑 → ( chr ‘ 𝐾 ) ∥ 𝑁 ) |
27 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑁 ) = ( ℤ/nℤ ‘ 𝑁 ) |
28 |
17 18 24 26 27 5
|
zndvdchrrhm |
⊢ ( 𝜑 → 𝐺 ∈ ( ( ℤ/nℤ ‘ 𝑁 ) RingHom 𝐾 ) ) |
29 |
14 9 15 4 28
|
rhmply1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom ( Poly1 ‘ 𝐾 ) ) ) |
30 |
|
rhmco |
⊢ ( ( 𝐻 ∈ ( ( Poly1 ‘ 𝐾 ) RingHom 𝐾 ) ∧ 𝐹 ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom ( Poly1 ‘ 𝐾 ) ) ) → ( 𝐻 ∘ 𝐹 ) ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom 𝐾 ) ) |
31 |
13 29 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom 𝐾 ) ) |