Metamath Proof Explorer


Theorem aks5lem1

Description: Section 5 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf. Construction of a ring homomorphism out of Zn X to K. (Contributed by metakunt, 7-Jun-2025)

Ref Expression
Hypotheses aks5lem1.1 ( 𝜑𝐾 ∈ Field )
aks5lem1.2 𝑃 = ( chr ‘ 𝐾 )
aks5lem1.3 ( 𝜑 → ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁 ) )
aks5lem1.4 𝐹 = ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↦ ( 𝐺𝑝 ) )
aks5lem1.5 𝐺 = ( 𝑞 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ( ( ℤRHom ‘ 𝐾 ) “ 𝑞 ) )
aks5lem1.6 𝐻 = ( 𝑟 ∈ ( Base ‘ ( Poly1𝐾 ) ) ↦ ( ( ( eval1𝐾 ) ‘ 𝑟 ) ‘ 𝑀 ) )
aks5lem1.7 ( 𝜑𝑀 ∈ ( Base ‘ 𝐾 ) )
Assertion aks5lem1 ( 𝜑 → ( 𝐻𝐹 ) ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom 𝐾 ) )

Proof

Step Hyp Ref Expression
1 aks5lem1.1 ( 𝜑𝐾 ∈ Field )
2 aks5lem1.2 𝑃 = ( chr ‘ 𝐾 )
3 aks5lem1.3 ( 𝜑 → ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁 ) )
4 aks5lem1.4 𝐹 = ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↦ ( 𝐺𝑝 ) )
5 aks5lem1.5 𝐺 = ( 𝑞 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ( ( ℤRHom ‘ 𝐾 ) “ 𝑞 ) )
6 aks5lem1.6 𝐻 = ( 𝑟 ∈ ( Base ‘ ( Poly1𝐾 ) ) ↦ ( ( ( eval1𝐾 ) ‘ 𝑟 ) ‘ 𝑀 ) )
7 aks5lem1.7 ( 𝜑𝑀 ∈ ( Base ‘ 𝐾 ) )
8 eqid ( eval1𝐾 ) = ( eval1𝐾 )
9 eqid ( Poly1𝐾 ) = ( Poly1𝐾 )
10 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
11 eqid ( Base ‘ ( Poly1𝐾 ) ) = ( Base ‘ ( Poly1𝐾 ) )
12 1 fldcrngd ( 𝜑𝐾 ∈ CRing )
13 8 9 10 11 12 7 6 evl1maprhm ( 𝜑𝐻 ∈ ( ( Poly1𝐾 ) RingHom 𝐾 ) )
14 eqid ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) )
15 eqid ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) )
16 crngring ( 𝐾 ∈ CRing → 𝐾 ∈ Ring )
17 12 16 syl ( 𝜑𝐾 ∈ Ring )
18 3 simp2d ( 𝜑𝑁 ∈ ℕ )
19 2 eqcomi ( chr ‘ 𝐾 ) = 𝑃
20 3 simp1d ( 𝜑𝑃 ∈ ℙ )
21 prmnn ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ )
22 20 21 syl ( 𝜑𝑃 ∈ ℕ )
23 22 nnzd ( 𝜑𝑃 ∈ ℤ )
24 19 23 eqeltrid ( 𝜑 → ( chr ‘ 𝐾 ) ∈ ℤ )
25 3 simp3d ( 𝜑𝑃𝑁 )
26 19 25 eqbrtrid ( 𝜑 → ( chr ‘ 𝐾 ) ∥ 𝑁 )
27 eqid ( ℤ/nℤ ‘ 𝑁 ) = ( ℤ/nℤ ‘ 𝑁 )
28 17 18 24 26 27 5 zndvdchrrhm ( 𝜑𝐺 ∈ ( ( ℤ/nℤ ‘ 𝑁 ) RingHom 𝐾 ) )
29 14 9 15 4 28 rhmply1 ( 𝜑𝐹 ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom ( Poly1𝐾 ) ) )
30 rhmco ( ( 𝐻 ∈ ( ( Poly1𝐾 ) RingHom 𝐾 ) ∧ 𝐹 ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom ( Poly1𝐾 ) ) ) → ( 𝐻𝐹 ) ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom 𝐾 ) )
31 13 29 30 syl2anc ( 𝜑 → ( 𝐻𝐹 ) ∈ ( ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) RingHom 𝐾 ) )