Metamath Proof Explorer


Theorem aks5lem2

Description: Lemma for section 5 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. Construct the quotient for the AKS reduction. (Contributed by metakunt, 7-Jun-2025)

Ref Expression
Hypotheses aks5lem1.1 φ K Field
aks5lem1.2 P = chr K
aks5lem1.3 φ P N P N
aks5lem1.4 F = p Base Poly 1 /N G p
aks5lem1.5 G = q Base /N ℤRHom K q
aks5lem1.6 H = r Base Poly 1 K eval 1 K r M
aks5lem2.1 φ M mulGrp K PrimRoots R
aks5lem2.2 I = s Base A H F s
aks5lem2.3 A = Poly 1 /N / 𝑠 Poly 1 /N ~ QG L
aks5lem2.4 L = RSpan Poly 1 /N R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N
aks5lem2.5 φ R
Assertion aks5lem2 φ I A RingHom K g Base Poly 1 /N I g Poly 1 /N ~ QG L = H F g

Proof

Step Hyp Ref Expression
1 aks5lem1.1 φ K Field
2 aks5lem1.2 P = chr K
3 aks5lem1.3 φ P N P N
4 aks5lem1.4 F = p Base Poly 1 /N G p
5 aks5lem1.5 G = q Base /N ℤRHom K q
6 aks5lem1.6 H = r Base Poly 1 K eval 1 K r M
7 aks5lem2.1 φ M mulGrp K PrimRoots R
8 aks5lem2.2 I = s Base A H F s
9 aks5lem2.3 A = Poly 1 /N / 𝑠 Poly 1 /N ~ QG L
10 aks5lem2.4 L = RSpan Poly 1 /N R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N
11 aks5lem2.5 φ R
12 eqid 0 K = 0 K
13 1 fldcrngd φ K CRing
14 eqid mulGrp K = mulGrp K
15 14 crngmgp K CRing mulGrp K CMnd
16 13 15 syl φ mulGrp K CMnd
17 11 nnnn0d φ R 0
18 eqid mulGrp K = mulGrp K
19 16 17 18 isprimroot φ M mulGrp K PrimRoots R M Base mulGrp K R mulGrp K M = 0 mulGrp K l 0 l mulGrp K M = 0 mulGrp K R l
20 7 19 mpbid φ M Base mulGrp K R mulGrp K M = 0 mulGrp K l 0 l mulGrp K M = 0 mulGrp K R l
21 20 simp1d φ M Base mulGrp K
22 eqid Base K = Base K
23 14 22 mgpbas Base K = Base mulGrp K
24 23 eqcomi Base mulGrp K = Base K
25 21 24 eleqtrdi φ M Base K
26 1 2 3 4 5 6 25 aks5lem1 φ H F Poly 1 /N RingHom K
27 eqid H F -1 0 K = H F -1 0 K
28 3 simp2d φ N
29 28 nnnn0d φ N 0
30 eqid /N = /N
31 30 zncrng N 0 /N CRing
32 29 31 syl φ /N CRing
33 eqid Poly 1 /N = Poly 1 /N
34 33 ply1crng /N CRing Poly 1 /N CRing
35 32 34 syl φ Poly 1 /N CRing
36 35 crnggrpd φ Poly 1 /N Grp
37 eqid mulGrp Poly 1 /N = mulGrp Poly 1 /N
38 eqid Base Poly 1 /N = Base Poly 1 /N
39 37 38 mgpbas Base Poly 1 /N = Base mulGrp Poly 1 /N
40 eqid mulGrp Poly 1 /N = mulGrp Poly 1 /N
41 35 crngringd φ Poly 1 /N Ring
42 37 ringmgp Poly 1 /N Ring mulGrp Poly 1 /N Mnd
43 41 42 syl φ mulGrp Poly 1 /N Mnd
44 32 crngringd φ /N Ring
45 eqid var 1 /N = var 1 /N
46 45 33 38 vr1cl /N Ring var 1 /N Base Poly 1 /N
47 44 46 syl φ var 1 /N Base Poly 1 /N
48 39 40 43 17 47 mulgnn0cld φ R mulGrp Poly 1 /N var 1 /N Base Poly 1 /N
49 eqid 1 Poly 1 /N = 1 Poly 1 /N
50 38 49 ringidcl Poly 1 /N Ring 1 Poly 1 /N Base Poly 1 /N
51 41 50 syl φ 1 Poly 1 /N Base Poly 1 /N
52 eqid - Poly 1 /N = - Poly 1 /N
53 38 52 grpsubcl Poly 1 /N Grp R mulGrp Poly 1 /N var 1 /N Base Poly 1 /N 1 Poly 1 /N Base Poly 1 /N R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N Base Poly 1 /N
54 36 48 51 53 syl3anc φ R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N Base Poly 1 /N
55 fvexd φ Base /N V
56 55 mptexd φ q Base /N ℤRHom K q V
57 5 56 eqeltrid φ G V
58 57 adantr φ p Base Poly 1 /N G V
59 vex p V
60 59 a1i φ p Base Poly 1 /N p V
61 58 60 coexd φ p Base Poly 1 /N G p V
62 61 4 fmptd φ F : Base Poly 1 /N V
63 62 ffund φ Fun F
64 62 fdmd φ dom F = Base Poly 1 /N
65 54 64 eleqtrrd φ R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N dom F
66 fvco Fun F R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N dom F H F R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N = H F R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N
67 63 65 66 syl2anc φ H F R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N = H F R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N
68 eqid Poly 1 K = Poly 1 K
69 13 crngringd φ K Ring
70 3 simp1d φ P
71 prmnn P P
72 70 71 syl φ P
73 2 72 eqeltrrid φ chr K
74 73 nnzd φ chr K
75 3 simp3d φ P N
76 2 75 eqbrtrrid φ chr K N
77 69 28 74 76 30 5 zndvdchrrhm φ G /N RingHom K
78 33 68 38 4 77 rhmply1 φ F Poly 1 /N RingHom Poly 1 K
79 rhmghm F Poly 1 /N RingHom Poly 1 K F Poly 1 /N GrpHom Poly 1 K
80 78 79 syl φ F Poly 1 /N GrpHom Poly 1 K
81 eqid - Poly 1 K = - Poly 1 K
82 38 52 81 ghmsub F Poly 1 /N GrpHom Poly 1 K R mulGrp Poly 1 /N var 1 /N Base Poly 1 /N 1 Poly 1 /N Base Poly 1 /N F R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N = F R mulGrp Poly 1 /N var 1 /N - Poly 1 K F 1 Poly 1 /N
83 80 48 51 82 syl3anc φ F R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N = F R mulGrp Poly 1 /N var 1 /N - Poly 1 K F 1 Poly 1 /N
84 83 fveq2d φ H F R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N = H F R mulGrp Poly 1 /N var 1 /N - Poly 1 K F 1 Poly 1 /N
85 eqid eval 1 K = eval 1 K
86 eqid Base Poly 1 K = Base Poly 1 K
87 85 68 22 86 13 25 6 evl1maprhm φ H Poly 1 K RingHom K
88 rhmghm H Poly 1 K RingHom K H Poly 1 K GrpHom K
89 87 88 syl φ H Poly 1 K GrpHom K
90 38 86 rhmf F Poly 1 /N RingHom Poly 1 K F : Base Poly 1 /N Base Poly 1 K
91 78 90 syl φ F : Base Poly 1 /N Base Poly 1 K
92 91 48 ffvelcdmd φ F R mulGrp Poly 1 /N var 1 /N Base Poly 1 K
93 91 51 ffvelcdmd φ F 1 Poly 1 /N Base Poly 1 K
94 eqid - K = - K
95 86 81 94 ghmsub H Poly 1 K GrpHom K F R mulGrp Poly 1 /N var 1 /N Base Poly 1 K F 1 Poly 1 /N Base Poly 1 K H F R mulGrp Poly 1 /N var 1 /N - Poly 1 K F 1 Poly 1 /N = H F R mulGrp Poly 1 /N var 1 /N - K H F 1 Poly 1 /N
96 89 92 93 95 syl3anc φ H F R mulGrp Poly 1 /N var 1 /N - Poly 1 K F 1 Poly 1 /N = H F R mulGrp Poly 1 /N var 1 /N - K H F 1 Poly 1 /N
97 eqid Poly 1 /N = Poly 1 /N
98 38 97 49 41 48 ringlidmd φ 1 Poly 1 /N Poly 1 /N R mulGrp Poly 1 /N var 1 /N = R mulGrp Poly 1 /N var 1 /N
99 98 eqcomd φ R mulGrp Poly 1 /N var 1 /N = 1 Poly 1 /N Poly 1 /N R mulGrp Poly 1 /N var 1 /N
100 32 elexd φ /N V
101 33 ply1sca /N V /N = Scalar Poly 1 /N
102 100 101 syl φ /N = Scalar Poly 1 /N
103 102 fveq2d φ 1 /N = 1 Scalar Poly 1 /N
104 103 fveq2d φ algSc Poly 1 /N 1 /N = algSc Poly 1 /N 1 Scalar Poly 1 /N
105 eqid algSc Poly 1 /N = algSc Poly 1 /N
106 eqid Scalar Poly 1 /N = Scalar Poly 1 /N
107 33 ply1lmod /N Ring Poly 1 /N LMod
108 44 107 syl φ Poly 1 /N LMod
109 105 106 108 41 ascl1 φ algSc Poly 1 /N 1 Scalar Poly 1 /N = 1 Poly 1 /N
110 104 109 eqtrd φ algSc Poly 1 /N 1 /N = 1 Poly 1 /N
111 110 eqcomd φ 1 Poly 1 /N = algSc Poly 1 /N 1 /N
112 111 oveq1d φ 1 Poly 1 /N Poly 1 /N R mulGrp Poly 1 /N var 1 /N = algSc Poly 1 /N 1 /N Poly 1 /N R mulGrp Poly 1 /N var 1 /N
113 99 112 eqtrd φ R mulGrp Poly 1 /N var 1 /N = algSc Poly 1 /N 1 /N Poly 1 /N R mulGrp Poly 1 /N var 1 /N
114 33 ply1assa /N CRing Poly 1 /N AssAlg
115 32 114 syl φ Poly 1 /N AssAlg
116 eqid Base /N = Base /N
117 eqid 1 /N = 1 /N
118 116 117 ringidcl /N Ring 1 /N Base /N
119 44 118 syl φ 1 /N Base /N
120 102 fveq2d φ Base /N = Base Scalar Poly 1 /N
121 119 120 eleqtrd φ 1 /N Base Scalar Poly 1 /N
122 eqid Base Scalar Poly 1 /N = Base Scalar Poly 1 /N
123 eqid Poly 1 /N = Poly 1 /N
124 105 106 122 38 97 123 asclmul1 Poly 1 /N AssAlg 1 /N Base Scalar Poly 1 /N R mulGrp Poly 1 /N var 1 /N Base Poly 1 /N algSc Poly 1 /N 1 /N Poly 1 /N R mulGrp Poly 1 /N var 1 /N = 1 /N Poly 1 /N R mulGrp Poly 1 /N var 1 /N
125 115 121 48 124 syl3anc φ algSc Poly 1 /N 1 /N Poly 1 /N R mulGrp Poly 1 /N var 1 /N = 1 /N Poly 1 /N R mulGrp Poly 1 /N var 1 /N
126 113 125 eqtrd φ R mulGrp Poly 1 /N var 1 /N = 1 /N Poly 1 /N R mulGrp Poly 1 /N var 1 /N
127 126 fveq2d φ F R mulGrp Poly 1 /N var 1 /N = F 1 /N Poly 1 /N R mulGrp Poly 1 /N var 1 /N
128 eqid var 1 K = var 1 K
129 eqid Poly 1 K = Poly 1 K
130 eqid mulGrp Poly 1 K = mulGrp Poly 1 K
131 eqid mulGrp Poly 1 K = mulGrp Poly 1 K
132 33 68 38 116 4 45 128 123 129 37 130 40 131 77 119 17 rhmply1mon φ F 1 /N Poly 1 /N R mulGrp Poly 1 /N var 1 /N = G 1 /N Poly 1 K R mulGrp Poly 1 K var 1 K
133 127 132 eqtrd φ F R mulGrp Poly 1 /N var 1 /N = G 1 /N Poly 1 K R mulGrp Poly 1 K var 1 K
134 133 fveq2d φ H F R mulGrp Poly 1 /N var 1 /N = H G 1 /N Poly 1 K R mulGrp Poly 1 K var 1 K
135 eqid 1 K = 1 K
136 117 135 rhm1 G /N RingHom K G 1 /N = 1 K
137 77 136 syl φ G 1 /N = 1 K
138 137 oveq1d φ G 1 /N Poly 1 K R mulGrp Poly 1 K var 1 K = 1 K Poly 1 K R mulGrp Poly 1 K var 1 K
139 138 fveq2d φ H G 1 /N Poly 1 K R mulGrp Poly 1 K var 1 K = H 1 K Poly 1 K R mulGrp Poly 1 K var 1 K
140 68 ply1assa K CRing Poly 1 K AssAlg
141 13 140 syl φ Poly 1 K AssAlg
142 22 135 ringidcl K Ring 1 K Base K
143 69 142 syl φ 1 K Base K
144 68 ply1sca K Field K = Scalar Poly 1 K
145 1 144 syl φ K = Scalar Poly 1 K
146 145 fveq2d φ Base K = Base Scalar Poly 1 K
147 143 146 eleqtrd φ 1 K Base Scalar Poly 1 K
148 130 86 mgpbas Base Poly 1 K = Base mulGrp Poly 1 K
149 68 ply1crng K CRing Poly 1 K CRing
150 13 149 syl φ Poly 1 K CRing
151 crngring Poly 1 K CRing Poly 1 K Ring
152 150 151 syl φ Poly 1 K Ring
153 130 ringmgp Poly 1 K Ring mulGrp Poly 1 K Mnd
154 152 153 syl φ mulGrp Poly 1 K Mnd
155 128 68 86 vr1cl K Ring var 1 K Base Poly 1 K
156 69 155 syl φ var 1 K Base Poly 1 K
157 148 131 154 17 156 mulgnn0cld φ R mulGrp Poly 1 K var 1 K Base Poly 1 K
158 eqid algSc Poly 1 K = algSc Poly 1 K
159 eqid Scalar Poly 1 K = Scalar Poly 1 K
160 eqid Base Scalar Poly 1 K = Base Scalar Poly 1 K
161 eqid Poly 1 K = Poly 1 K
162 158 159 160 86 161 129 asclmul1 Poly 1 K AssAlg 1 K Base Scalar Poly 1 K R mulGrp Poly 1 K var 1 K Base Poly 1 K algSc Poly 1 K 1 K Poly 1 K R mulGrp Poly 1 K var 1 K = 1 K Poly 1 K R mulGrp Poly 1 K var 1 K
163 141 147 157 162 syl3anc φ algSc Poly 1 K 1 K Poly 1 K R mulGrp Poly 1 K var 1 K = 1 K Poly 1 K R mulGrp Poly 1 K var 1 K
164 163 eqcomd φ 1 K Poly 1 K R mulGrp Poly 1 K var 1 K = algSc Poly 1 K 1 K Poly 1 K R mulGrp Poly 1 K var 1 K
165 164 fveq2d φ H 1 K Poly 1 K R mulGrp Poly 1 K var 1 K = H algSc Poly 1 K 1 K Poly 1 K R mulGrp Poly 1 K var 1 K
166 eqid 1 Poly 1 K = 1 Poly 1 K
167 68 158 135 166 69 ply1ascl1 φ algSc Poly 1 K 1 K = 1 Poly 1 K
168 167 oveq1d φ algSc Poly 1 K 1 K Poly 1 K R mulGrp Poly 1 K var 1 K = 1 Poly 1 K Poly 1 K R mulGrp Poly 1 K var 1 K
169 168 fveq2d φ H algSc Poly 1 K 1 K Poly 1 K R mulGrp Poly 1 K var 1 K = H 1 Poly 1 K Poly 1 K R mulGrp Poly 1 K var 1 K
170 86 161 166 152 157 ringlidmd φ 1 Poly 1 K Poly 1 K R mulGrp Poly 1 K var 1 K = R mulGrp Poly 1 K var 1 K
171 170 fveq2d φ H 1 Poly 1 K Poly 1 K R mulGrp Poly 1 K var 1 K = H R mulGrp Poly 1 K var 1 K
172 6 a1i φ H = r Base Poly 1 K eval 1 K r M
173 simpr φ r = R mulGrp Poly 1 K var 1 K r = R mulGrp Poly 1 K var 1 K
174 173 fveq2d φ r = R mulGrp Poly 1 K var 1 K eval 1 K r = eval 1 K R mulGrp Poly 1 K var 1 K
175 174 fveq1d φ r = R mulGrp Poly 1 K var 1 K eval 1 K r M = eval 1 K R mulGrp Poly 1 K var 1 K M
176 fvexd φ eval 1 K R mulGrp Poly 1 K var 1 K M V
177 172 175 157 176 fvmptd φ H R mulGrp Poly 1 K var 1 K = eval 1 K R mulGrp Poly 1 K var 1 K M
178 85 128 22 68 86 13 25 evl1vard φ var 1 K Base Poly 1 K eval 1 K var 1 K M = M
179 85 68 22 86 13 25 178 131 18 17 evl1expd φ R mulGrp Poly 1 K var 1 K Base Poly 1 K eval 1 K R mulGrp Poly 1 K var 1 K M = R mulGrp K M
180 179 simprd φ eval 1 K R mulGrp Poly 1 K var 1 K M = R mulGrp K M
181 20 simp2d φ R mulGrp K M = 0 mulGrp K
182 14 135 ringidval 1 K = 0 mulGrp K
183 182 eqcomi 0 mulGrp K = 1 K
184 183 a1i φ 0 mulGrp K = 1 K
185 181 184 eqtrd φ R mulGrp K M = 1 K
186 180 185 eqtrd φ eval 1 K R mulGrp Poly 1 K var 1 K M = 1 K
187 177 186 eqtrd φ H R mulGrp Poly 1 K var 1 K = 1 K
188 171 187 eqtrd φ H 1 Poly 1 K Poly 1 K R mulGrp Poly 1 K var 1 K = 1 K
189 169 188 eqtrd φ H algSc Poly 1 K 1 K Poly 1 K R mulGrp Poly 1 K var 1 K = 1 K
190 165 189 eqtrd φ H 1 K Poly 1 K R mulGrp Poly 1 K var 1 K = 1 K
191 139 190 eqtrd φ H G 1 /N Poly 1 K R mulGrp Poly 1 K var 1 K = 1 K
192 134 191 eqtrd φ H F R mulGrp Poly 1 /N var 1 /N = 1 K
193 166 135 rhm1 H Poly 1 K RingHom K H 1 Poly 1 K = 1 K
194 87 193 syl φ H 1 Poly 1 K = 1 K
195 194 eqcomd φ 1 K = H 1 Poly 1 K
196 192 195 eqtrd φ H F R mulGrp Poly 1 /N var 1 /N = H 1 Poly 1 K
197 196 194 eqtrd φ H F R mulGrp Poly 1 /N var 1 /N = 1 K
198 49 166 rhm1 F Poly 1 /N RingHom Poly 1 K F 1 Poly 1 /N = 1 Poly 1 K
199 78 198 syl φ F 1 Poly 1 /N = 1 Poly 1 K
200 199 fveq2d φ H F 1 Poly 1 /N = H 1 Poly 1 K
201 200 194 eqtrd φ H F 1 Poly 1 /N = 1 K
202 197 201 oveq12d φ H F R mulGrp Poly 1 /N var 1 /N - K H F 1 Poly 1 /N = 1 K - K 1 K
203 69 ringgrpd φ K Grp
204 22 12 94 grpsubid K Grp 1 K Base K 1 K - K 1 K = 0 K
205 203 143 204 syl2anc φ 1 K - K 1 K = 0 K
206 202 205 eqtrd φ H F R mulGrp Poly 1 /N var 1 /N - K H F 1 Poly 1 /N = 0 K
207 96 206 eqtrd φ H F R mulGrp Poly 1 /N var 1 /N - Poly 1 K F 1 Poly 1 /N = 0 K
208 84 207 eqtrd φ H F R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N = 0 K
209 67 208 eqtrd φ H F R mulGrp Poly 1 /N var 1 /N - Poly 1 /N 1 Poly 1 /N = 0 K
210 12 26 27 9 8 35 10 54 209 rhmqusspan φ I A RingHom K g Base Poly 1 /N I g Poly 1 /N ~ QG L = H F g