Metamath Proof Explorer


Theorem rhmqusspan

Description: Ring homomorphism out of a quotient given an ideal spanned by a singleton. (Contributed by metakunt, 7-Jun-2025)

Ref Expression
Hypotheses rhmqusspan.1 0 ˙ = 0 H
rhmqusspan.2 φ F G RingHom H
rhmqusspan.3 K = F -1 0 ˙
rhmqusspan.4 Q = G / 𝑠 G ~ QG N
rhmqusspan.5 J = q Base Q F q
rhmqusspan.6 φ G CRing
rhmqusspan.7 N = RSpan G X
rhmqusspan.8 φ X Base G
rhmqusspan.9 φ F X = 0 ˙
Assertion rhmqusspan φ J Q RingHom H g Base G J g G ~ QG N = F g

Proof

Step Hyp Ref Expression
1 rhmqusspan.1 0 ˙ = 0 H
2 rhmqusspan.2 φ F G RingHom H
3 rhmqusspan.3 K = F -1 0 ˙
4 rhmqusspan.4 Q = G / 𝑠 G ~ QG N
5 rhmqusspan.5 J = q Base Q F q
6 rhmqusspan.6 φ G CRing
7 rhmqusspan.7 N = RSpan G X
8 rhmqusspan.8 φ X Base G
9 rhmqusspan.9 φ F X = 0 ˙
10 6 crngringd φ G Ring
11 eqid Base G = Base G
12 eqid RSpan G = RSpan G
13 eqid r G = r G
14 11 12 13 rspsn G Ring X Base G RSpan G X = y | X r G y
15 10 8 14 syl2anc φ RSpan G X = y | X r G y
16 15 eleq2d φ x RSpan G X x y | X r G y
17 16 biimpd φ x RSpan G X x y | X r G y
18 17 imp φ x RSpan G X x y | X r G y
19 vex x V
20 19 a1i φ x V
21 breq2 y = x X r G y X r G x
22 21 elabg x V x y | X r G y X r G x
23 22 biimpd x V x y | X r G y X r G x
24 20 23 syl φ x y | X r G y X r G x
25 24 imp φ x y | X r G y X r G x
26 eqid G = G
27 11 13 26 dvdsr X r G x X Base G y Base G y G X = x
28 27 biimpi X r G x X Base G y Base G y G X = x
29 28 adantl φ X r G x X Base G y Base G y G X = x
30 fveq2 z G X = x F z G X = F x
31 30 eqcomd z G X = x F x = F z G X
32 31 adantl φ X Base G y Base G y G X = x z Base G z G X = x F x = F z G X
33 2 ad2antrr φ X Base G y Base G y G X = x z Base G F G RingHom H
34 simpr φ X Base G y Base G y G X = x z Base G z Base G
35 8 ad2antrr φ X Base G y Base G y G X = x z Base G X Base G
36 eqid H = H
37 11 26 36 rhmmul F G RingHom H z Base G X Base G F z G X = F z H F X
38 33 34 35 37 syl3anc φ X Base G y Base G y G X = x z Base G F z G X = F z H F X
39 9 ad2antrr φ X Base G y Base G y G X = x z Base G F X = 0 ˙
40 39 oveq2d φ X Base G y Base G y G X = x z Base G F z H F X = F z H 0 ˙
41 rhmrcl2 F G RingHom H H Ring
42 ringsrg H Ring H SRing
43 33 41 42 3syl φ X Base G y Base G y G X = x z Base G H SRing
44 eqid Base H = Base H
45 11 44 rhmf F G RingHom H F : Base G Base H
46 2 45 syl φ F : Base G Base H
47 46 adantr φ X Base G y Base G y G X = x F : Base G Base H
48 47 ffvelcdmda φ X Base G y Base G y G X = x z Base G F z Base H
49 44 36 1 srgrz H SRing F z Base H F z H 0 ˙ = 0 ˙
50 43 48 49 syl2anc φ X Base G y Base G y G X = x z Base G F z H 0 ˙ = 0 ˙
51 40 50 eqtrd φ X Base G y Base G y G X = x z Base G F z H F X = 0 ˙
52 38 51 eqtrd φ X Base G y Base G y G X = x z Base G F z G X = 0 ˙
53 52 adantr φ X Base G y Base G y G X = x z Base G z G X = x F z G X = 0 ˙
54 32 53 eqtrd φ X Base G y Base G y G X = x z Base G z G X = x F x = 0 ˙
55 nfv z y G X = x
56 nfv y z G X = x
57 oveq1 y = z y G X = z G X
58 57 eqeq1d y = z y G X = x z G X = x
59 55 56 58 cbvrexw y Base G y G X = x z Base G z G X = x
60 59 biimpi y Base G y G X = x z Base G z G X = x
61 60 adantl X Base G y Base G y G X = x z Base G z G X = x
62 61 adantl φ X Base G y Base G y G X = x z Base G z G X = x
63 54 62 r19.29a φ X Base G y Base G y G X = x F x = 0 ˙
64 63 ex φ X Base G y Base G y G X = x F x = 0 ˙
65 64 adantr φ X r G x X Base G y Base G y G X = x F x = 0 ˙
66 29 65 mpd φ X r G x F x = 0 ˙
67 66 ex φ X r G x F x = 0 ˙
68 67 adantr φ x y | X r G y X r G x F x = 0 ˙
69 25 68 mpd φ x y | X r G y F x = 0 ˙
70 69 ex φ x y | X r G y F x = 0 ˙
71 70 adantr φ x RSpan G X x y | X r G y F x = 0 ˙
72 18 71 mpd φ x RSpan G X F x = 0 ˙
73 fvexd φ x RSpan G X F x V
74 elsng F x V F x 0 ˙ F x = 0 ˙
75 73 74 syl φ x RSpan G X F x 0 ˙ F x = 0 ˙
76 72 75 mpbird φ x RSpan G X F x 0 ˙
77 46 ffund φ Fun F
78 77 adantr φ x RSpan G X Fun F
79 eqid LIdeal G = LIdeal G
80 79 11 lidl1 G Ring Base G LIdeal G
81 10 80 syl φ Base G LIdeal G
82 8 snssd φ X Base G
83 12 79 rspssp G Ring Base G LIdeal G X Base G RSpan G X Base G
84 10 81 82 83 syl3anc φ RSpan G X Base G
85 84 sselda φ x RSpan G X x Base G
86 fdm F : Base G Base H dom F = Base G
87 46 86 syl φ dom F = Base G
88 87 adantr φ x RSpan G X dom F = Base G
89 85 88 eleqtrrd φ x RSpan G X x dom F
90 fvimacnv Fun F x dom F F x 0 ˙ x F -1 0 ˙
91 78 89 90 syl2anc φ x RSpan G X F x 0 ˙ x F -1 0 ˙
92 76 91 mpbid φ x RSpan G X x F -1 0 ˙
93 92 ex φ x RSpan G X x F -1 0 ˙
94 93 ssrdv φ RSpan G X F -1 0 ˙
95 3 eqcomi F -1 0 ˙ = K
96 94 95 sseqtrdi φ RSpan G X K
97 7 96 eqsstrid φ N K
98 12 11 79 rspcl G Ring X Base G RSpan G X LIdeal G
99 10 82 98 syl2anc φ RSpan G X LIdeal G
100 7 99 eqeltrid φ N LIdeal G
101 1 2 3 4 5 6 97 100 rhmqusnsg φ J Q RingHom H
102 2 adantr φ g Base G F G RingHom H
103 rhmghm F G RingHom H F G GrpHom H
104 102 103 syl φ g Base G F G GrpHom H
105 97 adantr φ g Base G N K
106 lidlnsg G Ring N LIdeal G N NrmSGrp G
107 10 100 106 syl2anc φ N NrmSGrp G
108 107 adantr φ g Base G N NrmSGrp G
109 simpr φ g Base G g Base G
110 1 104 3 4 5 105 108 109 ghmqusnsglem1 φ g Base G J g G ~ QG N = F g
111 110 ralrimiva φ g Base G J g G ~ QG N = F g
112 101 111 jca φ J Q RingHom H g Base G J g G ~ QG N = F g