| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmqusspan.1 |
|
| 2 |
|
rhmqusspan.2 |
|
| 3 |
|
rhmqusspan.3 |
|
| 4 |
|
rhmqusspan.4 |
|
| 5 |
|
rhmqusspan.5 |
|
| 6 |
|
rhmqusspan.6 |
|
| 7 |
|
rhmqusspan.7 |
|
| 8 |
|
rhmqusspan.8 |
|
| 9 |
|
rhmqusspan.9 |
|
| 10 |
6
|
crngringd |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
11 12 13
|
rspsn |
|
| 15 |
10 8 14
|
syl2anc |
|
| 16 |
15
|
eleq2d |
|
| 17 |
16
|
biimpd |
|
| 18 |
17
|
imp |
|
| 19 |
|
vex |
|
| 20 |
19
|
a1i |
|
| 21 |
|
breq2 |
|
| 22 |
21
|
elabg |
|
| 23 |
22
|
biimpd |
|
| 24 |
20 23
|
syl |
|
| 25 |
24
|
imp |
|
| 26 |
|
eqid |
|
| 27 |
11 13 26
|
dvdsr |
|
| 28 |
27
|
biimpi |
|
| 29 |
28
|
adantl |
|
| 30 |
|
fveq2 |
|
| 31 |
30
|
eqcomd |
|
| 32 |
31
|
adantl |
|
| 33 |
2
|
ad2antrr |
|
| 34 |
|
simpr |
|
| 35 |
8
|
ad2antrr |
|
| 36 |
|
eqid |
|
| 37 |
11 26 36
|
rhmmul |
|
| 38 |
33 34 35 37
|
syl3anc |
|
| 39 |
9
|
ad2antrr |
|
| 40 |
39
|
oveq2d |
|
| 41 |
|
rhmrcl2 |
|
| 42 |
|
ringsrg |
|
| 43 |
33 41 42
|
3syl |
|
| 44 |
|
eqid |
|
| 45 |
11 44
|
rhmf |
|
| 46 |
2 45
|
syl |
|
| 47 |
46
|
adantr |
|
| 48 |
47
|
ffvelcdmda |
|
| 49 |
44 36 1
|
srgrz |
|
| 50 |
43 48 49
|
syl2anc |
|
| 51 |
40 50
|
eqtrd |
|
| 52 |
38 51
|
eqtrd |
|
| 53 |
52
|
adantr |
|
| 54 |
32 53
|
eqtrd |
|
| 55 |
|
nfv |
|
| 56 |
|
nfv |
|
| 57 |
|
oveq1 |
|
| 58 |
57
|
eqeq1d |
|
| 59 |
55 56 58
|
cbvrexw |
|
| 60 |
59
|
biimpi |
|
| 61 |
60
|
adantl |
|
| 62 |
61
|
adantl |
|
| 63 |
54 62
|
r19.29a |
|
| 64 |
63
|
ex |
|
| 65 |
64
|
adantr |
|
| 66 |
29 65
|
mpd |
|
| 67 |
66
|
ex |
|
| 68 |
67
|
adantr |
|
| 69 |
25 68
|
mpd |
|
| 70 |
69
|
ex |
|
| 71 |
70
|
adantr |
|
| 72 |
18 71
|
mpd |
|
| 73 |
|
fvexd |
|
| 74 |
|
elsng |
|
| 75 |
73 74
|
syl |
|
| 76 |
72 75
|
mpbird |
|
| 77 |
46
|
ffund |
|
| 78 |
77
|
adantr |
|
| 79 |
|
eqid |
|
| 80 |
79 11
|
lidl1 |
|
| 81 |
10 80
|
syl |
|
| 82 |
8
|
snssd |
|
| 83 |
12 79
|
rspssp |
|
| 84 |
10 81 82 83
|
syl3anc |
|
| 85 |
84
|
sselda |
|
| 86 |
|
fdm |
|
| 87 |
46 86
|
syl |
|
| 88 |
87
|
adantr |
|
| 89 |
85 88
|
eleqtrrd |
|
| 90 |
|
fvimacnv |
|
| 91 |
78 89 90
|
syl2anc |
|
| 92 |
76 91
|
mpbid |
|
| 93 |
92
|
ex |
|
| 94 |
93
|
ssrdv |
|
| 95 |
3
|
eqcomi |
|
| 96 |
94 95
|
sseqtrdi |
|
| 97 |
7 96
|
eqsstrid |
|
| 98 |
12 11 79
|
rspcl |
|
| 99 |
10 82 98
|
syl2anc |
|
| 100 |
7 99
|
eqeltrid |
|
| 101 |
1 2 3 4 5 6 97 100
|
rhmqusnsg |
|
| 102 |
2
|
adantr |
|
| 103 |
|
rhmghm |
|
| 104 |
102 103
|
syl |
|
| 105 |
97
|
adantr |
|
| 106 |
|
lidlnsg |
|
| 107 |
10 100 106
|
syl2anc |
|
| 108 |
107
|
adantr |
|
| 109 |
|
simpr |
|
| 110 |
1 104 3 4 5 105 108 109
|
ghmqusnsglem1 |
|
| 111 |
110
|
ralrimiva |
|
| 112 |
101 111
|
jca |
|