| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmqusspan.1 |  |-  .0. = ( 0g ` H ) | 
						
							| 2 |  | rhmqusspan.2 |  |-  ( ph -> F e. ( G RingHom H ) ) | 
						
							| 3 |  | rhmqusspan.3 |  |-  K = ( `' F " { .0. } ) | 
						
							| 4 |  | rhmqusspan.4 |  |-  Q = ( G /s ( G ~QG N ) ) | 
						
							| 5 |  | rhmqusspan.5 |  |-  J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) | 
						
							| 6 |  | rhmqusspan.6 |  |-  ( ph -> G e. CRing ) | 
						
							| 7 |  | rhmqusspan.7 |  |-  N = ( ( RSpan ` G ) ` { X } ) | 
						
							| 8 |  | rhmqusspan.8 |  |-  ( ph -> X e. ( Base ` G ) ) | 
						
							| 9 |  | rhmqusspan.9 |  |-  ( ph -> ( F ` X ) = .0. ) | 
						
							| 10 | 6 | crngringd |  |-  ( ph -> G e. Ring ) | 
						
							| 11 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 12 |  | eqid |  |-  ( RSpan ` G ) = ( RSpan ` G ) | 
						
							| 13 |  | eqid |  |-  ( ||r ` G ) = ( ||r ` G ) | 
						
							| 14 | 11 12 13 | rspsn |  |-  ( ( G e. Ring /\ X e. ( Base ` G ) ) -> ( ( RSpan ` G ) ` { X } ) = { y | X ( ||r ` G ) y } ) | 
						
							| 15 | 10 8 14 | syl2anc |  |-  ( ph -> ( ( RSpan ` G ) ` { X } ) = { y | X ( ||r ` G ) y } ) | 
						
							| 16 | 15 | eleq2d |  |-  ( ph -> ( x e. ( ( RSpan ` G ) ` { X } ) <-> x e. { y | X ( ||r ` G ) y } ) ) | 
						
							| 17 | 16 | biimpd |  |-  ( ph -> ( x e. ( ( RSpan ` G ) ` { X } ) -> x e. { y | X ( ||r ` G ) y } ) ) | 
						
							| 18 | 17 | imp |  |-  ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> x e. { y | X ( ||r ` G ) y } ) | 
						
							| 19 |  | vex |  |-  x e. _V | 
						
							| 20 | 19 | a1i |  |-  ( ph -> x e. _V ) | 
						
							| 21 |  | breq2 |  |-  ( y = x -> ( X ( ||r ` G ) y <-> X ( ||r ` G ) x ) ) | 
						
							| 22 | 21 | elabg |  |-  ( x e. _V -> ( x e. { y | X ( ||r ` G ) y } <-> X ( ||r ` G ) x ) ) | 
						
							| 23 | 22 | biimpd |  |-  ( x e. _V -> ( x e. { y | X ( ||r ` G ) y } -> X ( ||r ` G ) x ) ) | 
						
							| 24 | 20 23 | syl |  |-  ( ph -> ( x e. { y | X ( ||r ` G ) y } -> X ( ||r ` G ) x ) ) | 
						
							| 25 | 24 | imp |  |-  ( ( ph /\ x e. { y | X ( ||r ` G ) y } ) -> X ( ||r ` G ) x ) | 
						
							| 26 |  | eqid |  |-  ( .r ` G ) = ( .r ` G ) | 
						
							| 27 | 11 13 26 | dvdsr |  |-  ( X ( ||r ` G ) x <-> ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) | 
						
							| 28 | 27 | biimpi |  |-  ( X ( ||r ` G ) x -> ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ph /\ X ( ||r ` G ) x ) -> ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) | 
						
							| 30 |  | fveq2 |  |-  ( ( z ( .r ` G ) X ) = x -> ( F ` ( z ( .r ` G ) X ) ) = ( F ` x ) ) | 
						
							| 31 | 30 | eqcomd |  |-  ( ( z ( .r ` G ) X ) = x -> ( F ` x ) = ( F ` ( z ( .r ` G ) X ) ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) /\ ( z ( .r ` G ) X ) = x ) -> ( F ` x ) = ( F ` ( z ( .r ` G ) X ) ) ) | 
						
							| 33 | 2 | ad2antrr |  |-  ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> F e. ( G RingHom H ) ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> z e. ( Base ` G ) ) | 
						
							| 35 | 8 | ad2antrr |  |-  ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> X e. ( Base ` G ) ) | 
						
							| 36 |  | eqid |  |-  ( .r ` H ) = ( .r ` H ) | 
						
							| 37 | 11 26 36 | rhmmul |  |-  ( ( F e. ( G RingHom H ) /\ z e. ( Base ` G ) /\ X e. ( Base ` G ) ) -> ( F ` ( z ( .r ` G ) X ) ) = ( ( F ` z ) ( .r ` H ) ( F ` X ) ) ) | 
						
							| 38 | 33 34 35 37 | syl3anc |  |-  ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> ( F ` ( z ( .r ` G ) X ) ) = ( ( F ` z ) ( .r ` H ) ( F ` X ) ) ) | 
						
							| 39 | 9 | ad2antrr |  |-  ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> ( F ` X ) = .0. ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> ( ( F ` z ) ( .r ` H ) ( F ` X ) ) = ( ( F ` z ) ( .r ` H ) .0. ) ) | 
						
							| 41 |  | rhmrcl2 |  |-  ( F e. ( G RingHom H ) -> H e. Ring ) | 
						
							| 42 |  | ringsrg |  |-  ( H e. Ring -> H e. SRing ) | 
						
							| 43 | 33 41 42 | 3syl |  |-  ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> H e. SRing ) | 
						
							| 44 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 45 | 11 44 | rhmf |  |-  ( F e. ( G RingHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) | 
						
							| 46 | 2 45 | syl |  |-  ( ph -> F : ( Base ` G ) --> ( Base ` H ) ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) -> F : ( Base ` G ) --> ( Base ` H ) ) | 
						
							| 48 | 47 | ffvelcdmda |  |-  ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> ( F ` z ) e. ( Base ` H ) ) | 
						
							| 49 | 44 36 1 | srgrz |  |-  ( ( H e. SRing /\ ( F ` z ) e. ( Base ` H ) ) -> ( ( F ` z ) ( .r ` H ) .0. ) = .0. ) | 
						
							| 50 | 43 48 49 | syl2anc |  |-  ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> ( ( F ` z ) ( .r ` H ) .0. ) = .0. ) | 
						
							| 51 | 40 50 | eqtrd |  |-  ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> ( ( F ` z ) ( .r ` H ) ( F ` X ) ) = .0. ) | 
						
							| 52 | 38 51 | eqtrd |  |-  ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> ( F ` ( z ( .r ` G ) X ) ) = .0. ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) /\ ( z ( .r ` G ) X ) = x ) -> ( F ` ( z ( .r ` G ) X ) ) = .0. ) | 
						
							| 54 | 32 53 | eqtrd |  |-  ( ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) /\ ( z ( .r ` G ) X ) = x ) -> ( F ` x ) = .0. ) | 
						
							| 55 |  | nfv |  |-  F/ z ( y ( .r ` G ) X ) = x | 
						
							| 56 |  | nfv |  |-  F/ y ( z ( .r ` G ) X ) = x | 
						
							| 57 |  | oveq1 |  |-  ( y = z -> ( y ( .r ` G ) X ) = ( z ( .r ` G ) X ) ) | 
						
							| 58 | 57 | eqeq1d |  |-  ( y = z -> ( ( y ( .r ` G ) X ) = x <-> ( z ( .r ` G ) X ) = x ) ) | 
						
							| 59 | 55 56 58 | cbvrexw |  |-  ( E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x <-> E. z e. ( Base ` G ) ( z ( .r ` G ) X ) = x ) | 
						
							| 60 | 59 | biimpi |  |-  ( E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x -> E. z e. ( Base ` G ) ( z ( .r ` G ) X ) = x ) | 
						
							| 61 | 60 | adantl |  |-  ( ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) -> E. z e. ( Base ` G ) ( z ( .r ` G ) X ) = x ) | 
						
							| 62 | 61 | adantl |  |-  ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) -> E. z e. ( Base ` G ) ( z ( .r ` G ) X ) = x ) | 
						
							| 63 | 54 62 | r19.29a |  |-  ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) -> ( F ` x ) = .0. ) | 
						
							| 64 | 63 | ex |  |-  ( ph -> ( ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) -> ( F ` x ) = .0. ) ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ph /\ X ( ||r ` G ) x ) -> ( ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) -> ( F ` x ) = .0. ) ) | 
						
							| 66 | 29 65 | mpd |  |-  ( ( ph /\ X ( ||r ` G ) x ) -> ( F ` x ) = .0. ) | 
						
							| 67 | 66 | ex |  |-  ( ph -> ( X ( ||r ` G ) x -> ( F ` x ) = .0. ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ph /\ x e. { y | X ( ||r ` G ) y } ) -> ( X ( ||r ` G ) x -> ( F ` x ) = .0. ) ) | 
						
							| 69 | 25 68 | mpd |  |-  ( ( ph /\ x e. { y | X ( ||r ` G ) y } ) -> ( F ` x ) = .0. ) | 
						
							| 70 | 69 | ex |  |-  ( ph -> ( x e. { y | X ( ||r ` G ) y } -> ( F ` x ) = .0. ) ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> ( x e. { y | X ( ||r ` G ) y } -> ( F ` x ) = .0. ) ) | 
						
							| 72 | 18 71 | mpd |  |-  ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> ( F ` x ) = .0. ) | 
						
							| 73 |  | fvexd |  |-  ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> ( F ` x ) e. _V ) | 
						
							| 74 |  | elsng |  |-  ( ( F ` x ) e. _V -> ( ( F ` x ) e. { .0. } <-> ( F ` x ) = .0. ) ) | 
						
							| 75 | 73 74 | syl |  |-  ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> ( ( F ` x ) e. { .0. } <-> ( F ` x ) = .0. ) ) | 
						
							| 76 | 72 75 | mpbird |  |-  ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> ( F ` x ) e. { .0. } ) | 
						
							| 77 | 46 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> Fun F ) | 
						
							| 79 |  | eqid |  |-  ( LIdeal ` G ) = ( LIdeal ` G ) | 
						
							| 80 | 79 11 | lidl1 |  |-  ( G e. Ring -> ( Base ` G ) e. ( LIdeal ` G ) ) | 
						
							| 81 | 10 80 | syl |  |-  ( ph -> ( Base ` G ) e. ( LIdeal ` G ) ) | 
						
							| 82 | 8 | snssd |  |-  ( ph -> { X } C_ ( Base ` G ) ) | 
						
							| 83 | 12 79 | rspssp |  |-  ( ( G e. Ring /\ ( Base ` G ) e. ( LIdeal ` G ) /\ { X } C_ ( Base ` G ) ) -> ( ( RSpan ` G ) ` { X } ) C_ ( Base ` G ) ) | 
						
							| 84 | 10 81 82 83 | syl3anc |  |-  ( ph -> ( ( RSpan ` G ) ` { X } ) C_ ( Base ` G ) ) | 
						
							| 85 | 84 | sselda |  |-  ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> x e. ( Base ` G ) ) | 
						
							| 86 |  | fdm |  |-  ( F : ( Base ` G ) --> ( Base ` H ) -> dom F = ( Base ` G ) ) | 
						
							| 87 | 46 86 | syl |  |-  ( ph -> dom F = ( Base ` G ) ) | 
						
							| 88 | 87 | adantr |  |-  ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> dom F = ( Base ` G ) ) | 
						
							| 89 | 85 88 | eleqtrrd |  |-  ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> x e. dom F ) | 
						
							| 90 |  | fvimacnv |  |-  ( ( Fun F /\ x e. dom F ) -> ( ( F ` x ) e. { .0. } <-> x e. ( `' F " { .0. } ) ) ) | 
						
							| 91 | 78 89 90 | syl2anc |  |-  ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> ( ( F ` x ) e. { .0. } <-> x e. ( `' F " { .0. } ) ) ) | 
						
							| 92 | 76 91 | mpbid |  |-  ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> x e. ( `' F " { .0. } ) ) | 
						
							| 93 | 92 | ex |  |-  ( ph -> ( x e. ( ( RSpan ` G ) ` { X } ) -> x e. ( `' F " { .0. } ) ) ) | 
						
							| 94 | 93 | ssrdv |  |-  ( ph -> ( ( RSpan ` G ) ` { X } ) C_ ( `' F " { .0. } ) ) | 
						
							| 95 | 3 | eqcomi |  |-  ( `' F " { .0. } ) = K | 
						
							| 96 | 94 95 | sseqtrdi |  |-  ( ph -> ( ( RSpan ` G ) ` { X } ) C_ K ) | 
						
							| 97 | 7 96 | eqsstrid |  |-  ( ph -> N C_ K ) | 
						
							| 98 | 12 11 79 | rspcl |  |-  ( ( G e. Ring /\ { X } C_ ( Base ` G ) ) -> ( ( RSpan ` G ) ` { X } ) e. ( LIdeal ` G ) ) | 
						
							| 99 | 10 82 98 | syl2anc |  |-  ( ph -> ( ( RSpan ` G ) ` { X } ) e. ( LIdeal ` G ) ) | 
						
							| 100 | 7 99 | eqeltrid |  |-  ( ph -> N e. ( LIdeal ` G ) ) | 
						
							| 101 | 1 2 3 4 5 6 97 100 | rhmqusnsg |  |-  ( ph -> J e. ( Q RingHom H ) ) | 
						
							| 102 | 2 | adantr |  |-  ( ( ph /\ g e. ( Base ` G ) ) -> F e. ( G RingHom H ) ) | 
						
							| 103 |  | rhmghm |  |-  ( F e. ( G RingHom H ) -> F e. ( G GrpHom H ) ) | 
						
							| 104 | 102 103 | syl |  |-  ( ( ph /\ g e. ( Base ` G ) ) -> F e. ( G GrpHom H ) ) | 
						
							| 105 | 97 | adantr |  |-  ( ( ph /\ g e. ( Base ` G ) ) -> N C_ K ) | 
						
							| 106 |  | lidlnsg |  |-  ( ( G e. Ring /\ N e. ( LIdeal ` G ) ) -> N e. ( NrmSGrp ` G ) ) | 
						
							| 107 | 10 100 106 | syl2anc |  |-  ( ph -> N e. ( NrmSGrp ` G ) ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ph /\ g e. ( Base ` G ) ) -> N e. ( NrmSGrp ` G ) ) | 
						
							| 109 |  | simpr |  |-  ( ( ph /\ g e. ( Base ` G ) ) -> g e. ( Base ` G ) ) | 
						
							| 110 | 1 104 3 4 5 105 108 109 | ghmqusnsglem1 |  |-  ( ( ph /\ g e. ( Base ` G ) ) -> ( J ` [ g ] ( G ~QG N ) ) = ( F ` g ) ) | 
						
							| 111 | 110 | ralrimiva |  |-  ( ph -> A. g e. ( Base ` G ) ( J ` [ g ] ( G ~QG N ) ) = ( F ` g ) ) | 
						
							| 112 | 101 111 | jca |  |-  ( ph -> ( J e. ( Q RingHom H ) /\ A. g e. ( Base ` G ) ( J ` [ g ] ( G ~QG N ) ) = ( F ` g ) ) ) |