Step |
Hyp |
Ref |
Expression |
1 |
|
rhmqusspan.1 |
|- .0. = ( 0g ` H ) |
2 |
|
rhmqusspan.2 |
|- ( ph -> F e. ( G RingHom H ) ) |
3 |
|
rhmqusspan.3 |
|- K = ( `' F " { .0. } ) |
4 |
|
rhmqusspan.4 |
|- Q = ( G /s ( G ~QG N ) ) |
5 |
|
rhmqusspan.5 |
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
6 |
|
rhmqusspan.6 |
|- ( ph -> G e. CRing ) |
7 |
|
rhmqusspan.7 |
|- N = ( ( RSpan ` G ) ` { X } ) |
8 |
|
rhmqusspan.8 |
|- ( ph -> X e. ( Base ` G ) ) |
9 |
|
rhmqusspan.9 |
|- ( ph -> ( F ` X ) = .0. ) |
10 |
6
|
crngringd |
|- ( ph -> G e. Ring ) |
11 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
12 |
|
eqid |
|- ( RSpan ` G ) = ( RSpan ` G ) |
13 |
|
eqid |
|- ( ||r ` G ) = ( ||r ` G ) |
14 |
11 12 13
|
rspsn |
|- ( ( G e. Ring /\ X e. ( Base ` G ) ) -> ( ( RSpan ` G ) ` { X } ) = { y | X ( ||r ` G ) y } ) |
15 |
10 8 14
|
syl2anc |
|- ( ph -> ( ( RSpan ` G ) ` { X } ) = { y | X ( ||r ` G ) y } ) |
16 |
15
|
eleq2d |
|- ( ph -> ( x e. ( ( RSpan ` G ) ` { X } ) <-> x e. { y | X ( ||r ` G ) y } ) ) |
17 |
16
|
biimpd |
|- ( ph -> ( x e. ( ( RSpan ` G ) ` { X } ) -> x e. { y | X ( ||r ` G ) y } ) ) |
18 |
17
|
imp |
|- ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> x e. { y | X ( ||r ` G ) y } ) |
19 |
|
vex |
|- x e. _V |
20 |
19
|
a1i |
|- ( ph -> x e. _V ) |
21 |
|
breq2 |
|- ( y = x -> ( X ( ||r ` G ) y <-> X ( ||r ` G ) x ) ) |
22 |
21
|
elabg |
|- ( x e. _V -> ( x e. { y | X ( ||r ` G ) y } <-> X ( ||r ` G ) x ) ) |
23 |
22
|
biimpd |
|- ( x e. _V -> ( x e. { y | X ( ||r ` G ) y } -> X ( ||r ` G ) x ) ) |
24 |
20 23
|
syl |
|- ( ph -> ( x e. { y | X ( ||r ` G ) y } -> X ( ||r ` G ) x ) ) |
25 |
24
|
imp |
|- ( ( ph /\ x e. { y | X ( ||r ` G ) y } ) -> X ( ||r ` G ) x ) |
26 |
|
eqid |
|- ( .r ` G ) = ( .r ` G ) |
27 |
11 13 26
|
dvdsr |
|- ( X ( ||r ` G ) x <-> ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) |
28 |
27
|
biimpi |
|- ( X ( ||r ` G ) x -> ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) |
29 |
28
|
adantl |
|- ( ( ph /\ X ( ||r ` G ) x ) -> ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) |
30 |
|
fveq2 |
|- ( ( z ( .r ` G ) X ) = x -> ( F ` ( z ( .r ` G ) X ) ) = ( F ` x ) ) |
31 |
30
|
eqcomd |
|- ( ( z ( .r ` G ) X ) = x -> ( F ` x ) = ( F ` ( z ( .r ` G ) X ) ) ) |
32 |
31
|
adantl |
|- ( ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) /\ ( z ( .r ` G ) X ) = x ) -> ( F ` x ) = ( F ` ( z ( .r ` G ) X ) ) ) |
33 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> F e. ( G RingHom H ) ) |
34 |
|
simpr |
|- ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> z e. ( Base ` G ) ) |
35 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> X e. ( Base ` G ) ) |
36 |
|
eqid |
|- ( .r ` H ) = ( .r ` H ) |
37 |
11 26 36
|
rhmmul |
|- ( ( F e. ( G RingHom H ) /\ z e. ( Base ` G ) /\ X e. ( Base ` G ) ) -> ( F ` ( z ( .r ` G ) X ) ) = ( ( F ` z ) ( .r ` H ) ( F ` X ) ) ) |
38 |
33 34 35 37
|
syl3anc |
|- ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> ( F ` ( z ( .r ` G ) X ) ) = ( ( F ` z ) ( .r ` H ) ( F ` X ) ) ) |
39 |
9
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> ( F ` X ) = .0. ) |
40 |
39
|
oveq2d |
|- ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> ( ( F ` z ) ( .r ` H ) ( F ` X ) ) = ( ( F ` z ) ( .r ` H ) .0. ) ) |
41 |
|
rhmrcl2 |
|- ( F e. ( G RingHom H ) -> H e. Ring ) |
42 |
|
ringsrg |
|- ( H e. Ring -> H e. SRing ) |
43 |
33 41 42
|
3syl |
|- ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> H e. SRing ) |
44 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
45 |
11 44
|
rhmf |
|- ( F e. ( G RingHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
46 |
2 45
|
syl |
|- ( ph -> F : ( Base ` G ) --> ( Base ` H ) ) |
47 |
46
|
adantr |
|- ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
48 |
47
|
ffvelcdmda |
|- ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> ( F ` z ) e. ( Base ` H ) ) |
49 |
44 36 1
|
srgrz |
|- ( ( H e. SRing /\ ( F ` z ) e. ( Base ` H ) ) -> ( ( F ` z ) ( .r ` H ) .0. ) = .0. ) |
50 |
43 48 49
|
syl2anc |
|- ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> ( ( F ` z ) ( .r ` H ) .0. ) = .0. ) |
51 |
40 50
|
eqtrd |
|- ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> ( ( F ` z ) ( .r ` H ) ( F ` X ) ) = .0. ) |
52 |
38 51
|
eqtrd |
|- ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) -> ( F ` ( z ( .r ` G ) X ) ) = .0. ) |
53 |
52
|
adantr |
|- ( ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) /\ ( z ( .r ` G ) X ) = x ) -> ( F ` ( z ( .r ` G ) X ) ) = .0. ) |
54 |
32 53
|
eqtrd |
|- ( ( ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) /\ z e. ( Base ` G ) ) /\ ( z ( .r ` G ) X ) = x ) -> ( F ` x ) = .0. ) |
55 |
|
nfv |
|- F/ z ( y ( .r ` G ) X ) = x |
56 |
|
nfv |
|- F/ y ( z ( .r ` G ) X ) = x |
57 |
|
oveq1 |
|- ( y = z -> ( y ( .r ` G ) X ) = ( z ( .r ` G ) X ) ) |
58 |
57
|
eqeq1d |
|- ( y = z -> ( ( y ( .r ` G ) X ) = x <-> ( z ( .r ` G ) X ) = x ) ) |
59 |
55 56 58
|
cbvrexw |
|- ( E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x <-> E. z e. ( Base ` G ) ( z ( .r ` G ) X ) = x ) |
60 |
59
|
biimpi |
|- ( E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x -> E. z e. ( Base ` G ) ( z ( .r ` G ) X ) = x ) |
61 |
60
|
adantl |
|- ( ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) -> E. z e. ( Base ` G ) ( z ( .r ` G ) X ) = x ) |
62 |
61
|
adantl |
|- ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) -> E. z e. ( Base ` G ) ( z ( .r ` G ) X ) = x ) |
63 |
54 62
|
r19.29a |
|- ( ( ph /\ ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) ) -> ( F ` x ) = .0. ) |
64 |
63
|
ex |
|- ( ph -> ( ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) -> ( F ` x ) = .0. ) ) |
65 |
64
|
adantr |
|- ( ( ph /\ X ( ||r ` G ) x ) -> ( ( X e. ( Base ` G ) /\ E. y e. ( Base ` G ) ( y ( .r ` G ) X ) = x ) -> ( F ` x ) = .0. ) ) |
66 |
29 65
|
mpd |
|- ( ( ph /\ X ( ||r ` G ) x ) -> ( F ` x ) = .0. ) |
67 |
66
|
ex |
|- ( ph -> ( X ( ||r ` G ) x -> ( F ` x ) = .0. ) ) |
68 |
67
|
adantr |
|- ( ( ph /\ x e. { y | X ( ||r ` G ) y } ) -> ( X ( ||r ` G ) x -> ( F ` x ) = .0. ) ) |
69 |
25 68
|
mpd |
|- ( ( ph /\ x e. { y | X ( ||r ` G ) y } ) -> ( F ` x ) = .0. ) |
70 |
69
|
ex |
|- ( ph -> ( x e. { y | X ( ||r ` G ) y } -> ( F ` x ) = .0. ) ) |
71 |
70
|
adantr |
|- ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> ( x e. { y | X ( ||r ` G ) y } -> ( F ` x ) = .0. ) ) |
72 |
18 71
|
mpd |
|- ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> ( F ` x ) = .0. ) |
73 |
|
fvexd |
|- ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> ( F ` x ) e. _V ) |
74 |
|
elsng |
|- ( ( F ` x ) e. _V -> ( ( F ` x ) e. { .0. } <-> ( F ` x ) = .0. ) ) |
75 |
73 74
|
syl |
|- ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> ( ( F ` x ) e. { .0. } <-> ( F ` x ) = .0. ) ) |
76 |
72 75
|
mpbird |
|- ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> ( F ` x ) e. { .0. } ) |
77 |
46
|
ffund |
|- ( ph -> Fun F ) |
78 |
77
|
adantr |
|- ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> Fun F ) |
79 |
|
eqid |
|- ( LIdeal ` G ) = ( LIdeal ` G ) |
80 |
79 11
|
lidl1 |
|- ( G e. Ring -> ( Base ` G ) e. ( LIdeal ` G ) ) |
81 |
10 80
|
syl |
|- ( ph -> ( Base ` G ) e. ( LIdeal ` G ) ) |
82 |
8
|
snssd |
|- ( ph -> { X } C_ ( Base ` G ) ) |
83 |
12 79
|
rspssp |
|- ( ( G e. Ring /\ ( Base ` G ) e. ( LIdeal ` G ) /\ { X } C_ ( Base ` G ) ) -> ( ( RSpan ` G ) ` { X } ) C_ ( Base ` G ) ) |
84 |
10 81 82 83
|
syl3anc |
|- ( ph -> ( ( RSpan ` G ) ` { X } ) C_ ( Base ` G ) ) |
85 |
84
|
sselda |
|- ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> x e. ( Base ` G ) ) |
86 |
|
fdm |
|- ( F : ( Base ` G ) --> ( Base ` H ) -> dom F = ( Base ` G ) ) |
87 |
46 86
|
syl |
|- ( ph -> dom F = ( Base ` G ) ) |
88 |
87
|
adantr |
|- ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> dom F = ( Base ` G ) ) |
89 |
85 88
|
eleqtrrd |
|- ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> x e. dom F ) |
90 |
|
fvimacnv |
|- ( ( Fun F /\ x e. dom F ) -> ( ( F ` x ) e. { .0. } <-> x e. ( `' F " { .0. } ) ) ) |
91 |
78 89 90
|
syl2anc |
|- ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> ( ( F ` x ) e. { .0. } <-> x e. ( `' F " { .0. } ) ) ) |
92 |
76 91
|
mpbid |
|- ( ( ph /\ x e. ( ( RSpan ` G ) ` { X } ) ) -> x e. ( `' F " { .0. } ) ) |
93 |
92
|
ex |
|- ( ph -> ( x e. ( ( RSpan ` G ) ` { X } ) -> x e. ( `' F " { .0. } ) ) ) |
94 |
93
|
ssrdv |
|- ( ph -> ( ( RSpan ` G ) ` { X } ) C_ ( `' F " { .0. } ) ) |
95 |
3
|
eqcomi |
|- ( `' F " { .0. } ) = K |
96 |
94 95
|
sseqtrdi |
|- ( ph -> ( ( RSpan ` G ) ` { X } ) C_ K ) |
97 |
7 96
|
eqsstrid |
|- ( ph -> N C_ K ) |
98 |
12 11 79
|
rspcl |
|- ( ( G e. Ring /\ { X } C_ ( Base ` G ) ) -> ( ( RSpan ` G ) ` { X } ) e. ( LIdeal ` G ) ) |
99 |
10 82 98
|
syl2anc |
|- ( ph -> ( ( RSpan ` G ) ` { X } ) e. ( LIdeal ` G ) ) |
100 |
7 99
|
eqeltrid |
|- ( ph -> N e. ( LIdeal ` G ) ) |
101 |
1 2 3 4 5 6 97 100
|
rhmqusnsg |
|- ( ph -> J e. ( Q RingHom H ) ) |
102 |
2
|
adantr |
|- ( ( ph /\ g e. ( Base ` G ) ) -> F e. ( G RingHom H ) ) |
103 |
|
rhmghm |
|- ( F e. ( G RingHom H ) -> F e. ( G GrpHom H ) ) |
104 |
102 103
|
syl |
|- ( ( ph /\ g e. ( Base ` G ) ) -> F e. ( G GrpHom H ) ) |
105 |
97
|
adantr |
|- ( ( ph /\ g e. ( Base ` G ) ) -> N C_ K ) |
106 |
|
lidlnsg |
|- ( ( G e. Ring /\ N e. ( LIdeal ` G ) ) -> N e. ( NrmSGrp ` G ) ) |
107 |
10 100 106
|
syl2anc |
|- ( ph -> N e. ( NrmSGrp ` G ) ) |
108 |
107
|
adantr |
|- ( ( ph /\ g e. ( Base ` G ) ) -> N e. ( NrmSGrp ` G ) ) |
109 |
|
simpr |
|- ( ( ph /\ g e. ( Base ` G ) ) -> g e. ( Base ` G ) ) |
110 |
1 104 3 4 5 105 108 109
|
ghmqusnsglem1 |
|- ( ( ph /\ g e. ( Base ` G ) ) -> ( J ` [ g ] ( G ~QG N ) ) = ( F ` g ) ) |
111 |
110
|
ralrimiva |
|- ( ph -> A. g e. ( Base ` G ) ( J ` [ g ] ( G ~QG N ) ) = ( F ` g ) ) |
112 |
101 111
|
jca |
|- ( ph -> ( J e. ( Q RingHom H ) /\ A. g e. ( Base ` G ) ( J ` [ g ] ( G ~QG N ) ) = ( F ` g ) ) ) |