Description: Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof shortened by AV, 18-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidl0.u | |- U = ( LIdeal ` R ) |
|
| rnglidl1.b | |- B = ( Base ` R ) |
||
| Assertion | lidl1 | |- ( R e. Ring -> B e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidl0.u | |- U = ( LIdeal ` R ) |
|
| 2 | rnglidl1.b | |- B = ( Base ` R ) |
|
| 3 | ringrng | |- ( R e. Ring -> R e. Rng ) |
|
| 4 | 1 2 | rnglidl1 | |- ( R e. Rng -> B e. U ) |
| 5 | 3 4 | syl | |- ( R e. Ring -> B e. U ) |