Step |
Hyp |
Ref |
Expression |
1 |
|
lidlacs.b |
|- B = ( Base ` W ) |
2 |
|
lidlacs.i |
|- I = ( LIdeal ` W ) |
3 |
|
lidlval |
|- ( LIdeal ` W ) = ( LSubSp ` ( ringLMod ` W ) ) |
4 |
2 3
|
eqtri |
|- I = ( LSubSp ` ( ringLMod ` W ) ) |
5 |
|
rlmlmod |
|- ( W e. Ring -> ( ringLMod ` W ) e. LMod ) |
6 |
|
rlmbas |
|- ( Base ` W ) = ( Base ` ( ringLMod ` W ) ) |
7 |
1 6
|
eqtri |
|- B = ( Base ` ( ringLMod ` W ) ) |
8 |
|
eqid |
|- ( LSubSp ` ( ringLMod ` W ) ) = ( LSubSp ` ( ringLMod ` W ) ) |
9 |
7 8
|
lssacs |
|- ( ( ringLMod ` W ) e. LMod -> ( LSubSp ` ( ringLMod ` W ) ) e. ( ACS ` B ) ) |
10 |
5 9
|
syl |
|- ( W e. Ring -> ( LSubSp ` ( ringLMod ` W ) ) e. ( ACS ` B ) ) |
11 |
4 10
|
eqeltrid |
|- ( W e. Ring -> I e. ( ACS ` B ) ) |