| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lidlacs.b |
|- B = ( Base ` W ) |
| 2 |
|
lidlacs.i |
|- I = ( LIdeal ` W ) |
| 3 |
|
lidlval |
|- ( LIdeal ` W ) = ( LSubSp ` ( ringLMod ` W ) ) |
| 4 |
2 3
|
eqtri |
|- I = ( LSubSp ` ( ringLMod ` W ) ) |
| 5 |
|
rlmlmod |
|- ( W e. Ring -> ( ringLMod ` W ) e. LMod ) |
| 6 |
|
rlmbas |
|- ( Base ` W ) = ( Base ` ( ringLMod ` W ) ) |
| 7 |
1 6
|
eqtri |
|- B = ( Base ` ( ringLMod ` W ) ) |
| 8 |
|
eqid |
|- ( LSubSp ` ( ringLMod ` W ) ) = ( LSubSp ` ( ringLMod ` W ) ) |
| 9 |
7 8
|
lssacs |
|- ( ( ringLMod ` W ) e. LMod -> ( LSubSp ` ( ringLMod ` W ) ) e. ( ACS ` B ) ) |
| 10 |
5 9
|
syl |
|- ( W e. Ring -> ( LSubSp ` ( ringLMod ` W ) ) e. ( ACS ` B ) ) |
| 11 |
4 10
|
eqeltrid |
|- ( W e. Ring -> I e. ( ACS ` B ) ) |