Metamath Proof Explorer


Theorem lidlacs

Description: The ideal system is an algebraic closure system on the base set. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypotheses lidlacs.b B=BaseW
lidlacs.i I=LIdealW
Assertion lidlacs WRingIACSB

Proof

Step Hyp Ref Expression
1 lidlacs.b B=BaseW
2 lidlacs.i I=LIdealW
3 lidlval LIdealW=LSubSpringLModW
4 2 3 eqtri I=LSubSpringLModW
5 rlmlmod WRingringLModWLMod
6 rlmbas BaseW=BaseringLModW
7 1 6 eqtri B=BaseringLModW
8 eqid LSubSpringLModW=LSubSpringLModW
9 7 8 lssacs ringLModWLModLSubSpringLModWACSB
10 5 9 syl WRingLSubSpringLModWACSB
11 4 10 eqeltrid WRingIACSB