| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lidlacs.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
lidlacs.i |
⊢ 𝐼 = ( LIdeal ‘ 𝑊 ) |
| 3 |
|
lidlval |
⊢ ( LIdeal ‘ 𝑊 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) |
| 4 |
2 3
|
eqtri |
⊢ 𝐼 = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) |
| 5 |
|
rlmlmod |
⊢ ( 𝑊 ∈ Ring → ( ringLMod ‘ 𝑊 ) ∈ LMod ) |
| 6 |
|
rlmbas |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( ringLMod ‘ 𝑊 ) ) |
| 7 |
1 6
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑊 ) ) |
| 8 |
|
eqid |
⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) |
| 9 |
7 8
|
lssacs |
⊢ ( ( ringLMod ‘ 𝑊 ) ∈ LMod → ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) ∈ ( ACS ‘ 𝐵 ) ) |
| 10 |
5 9
|
syl |
⊢ ( 𝑊 ∈ Ring → ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) ∈ ( ACS ‘ 𝐵 ) ) |
| 11 |
4 10
|
eqeltrid |
⊢ ( 𝑊 ∈ Ring → 𝐼 ∈ ( ACS ‘ 𝐵 ) ) |