Step |
Hyp |
Ref |
Expression |
1 |
|
rnglidl0.u |
|- U = ( LIdeal ` R ) |
2 |
|
rnglidl1.b |
|- B = ( Base ` R ) |
3 |
2
|
eqimssi |
|- B C_ ( Base ` R ) |
4 |
3
|
a1i |
|- ( R e. Rng -> B C_ ( Base ` R ) ) |
5 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
6 |
2
|
grpbn0 |
|- ( R e. Grp -> B =/= (/) ) |
7 |
5 6
|
syl |
|- ( R e. Rng -> B =/= (/) ) |
8 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
9 |
5
|
adantr |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> R e. Grp ) |
10 |
|
simpl |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> R e. Rng ) |
11 |
2
|
eqcomi |
|- ( Base ` R ) = B |
12 |
11
|
eleq2i |
|- ( x e. ( Base ` R ) <-> x e. B ) |
13 |
12
|
biimpi |
|- ( x e. ( Base ` R ) -> x e. B ) |
14 |
13
|
3ad2ant1 |
|- ( ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) -> x e. B ) |
15 |
14
|
adantl |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> x e. B ) |
16 |
|
simpr2 |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> y e. B ) |
17 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
18 |
2 17
|
rngcl |
|- ( ( R e. Rng /\ x e. B /\ y e. B ) -> ( x ( .r ` R ) y ) e. B ) |
19 |
10 15 16 18
|
syl3anc |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> ( x ( .r ` R ) y ) e. B ) |
20 |
|
simpr3 |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> z e. B ) |
21 |
2 8 9 19 20
|
grpcld |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. B ) |
22 |
21
|
ralrimivvva |
|- ( R e. Rng -> A. x e. ( Base ` R ) A. y e. B A. z e. B ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. B ) |
23 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
24 |
1 23 8 17
|
islidl |
|- ( B e. U <-> ( B C_ ( Base ` R ) /\ B =/= (/) /\ A. x e. ( Base ` R ) A. y e. B A. z e. B ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. B ) ) |
25 |
4 7 22 24
|
syl3anbrc |
|- ( R e. Rng -> B e. U ) |