| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnglidl0.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
| 2 |
|
rnglidl1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
2
|
eqimssi |
⊢ 𝐵 ⊆ ( Base ‘ 𝑅 ) |
| 4 |
3
|
a1i |
⊢ ( 𝑅 ∈ Rng → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) |
| 5 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
| 6 |
2
|
grpbn0 |
⊢ ( 𝑅 ∈ Grp → 𝐵 ≠ ∅ ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑅 ∈ Rng → 𝐵 ≠ ∅ ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 9 |
5
|
adantr |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑅 ∈ Grp ) |
| 10 |
|
simpl |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑅 ∈ Rng ) |
| 11 |
2
|
eqcomi |
⊢ ( Base ‘ 𝑅 ) = 𝐵 |
| 12 |
11
|
eleq2i |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↔ 𝑥 ∈ 𝐵 ) |
| 13 |
12
|
biimpi |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) → 𝑥 ∈ 𝐵 ) |
| 14 |
13
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 16 |
|
simpr2 |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 17 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 18 |
2 17
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
| 19 |
10 15 16 18
|
syl3anc |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
| 20 |
|
simpr3 |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 21 |
2 8 9 19 20
|
grpcld |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
| 22 |
21
|
ralrimivvva |
⊢ ( 𝑅 ∈ Rng → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 24 |
1 23 8 17
|
islidl |
⊢ ( 𝐵 ∈ 𝑈 ↔ ( 𝐵 ⊆ ( Base ‘ 𝑅 ) ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) ) |
| 25 |
4 7 22 24
|
syl3anbrc |
⊢ ( 𝑅 ∈ Rng → 𝐵 ∈ 𝑈 ) |