Step |
Hyp |
Ref |
Expression |
1 |
|
rnglidl0.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
2 |
|
rnglidl1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
2
|
eqimssi |
⊢ 𝐵 ⊆ ( Base ‘ 𝑅 ) |
4 |
3
|
a1i |
⊢ ( 𝑅 ∈ Rng → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) |
5 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
6 |
2
|
grpbn0 |
⊢ ( 𝑅 ∈ Grp → 𝐵 ≠ ∅ ) |
7 |
5 6
|
syl |
⊢ ( 𝑅 ∈ Rng → 𝐵 ≠ ∅ ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
9 |
5
|
adantr |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑅 ∈ Grp ) |
10 |
|
simpl |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑅 ∈ Rng ) |
11 |
2
|
eqcomi |
⊢ ( Base ‘ 𝑅 ) = 𝐵 |
12 |
11
|
eleq2i |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↔ 𝑥 ∈ 𝐵 ) |
13 |
12
|
biimpi |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) → 𝑥 ∈ 𝐵 ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
15 |
14
|
adantl |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
16 |
|
simpr2 |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
17 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
18 |
2 17
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
19 |
10 15 16 18
|
syl3anc |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
20 |
|
simpr3 |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
21 |
2 8 9 19 20
|
grpcld |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
22 |
21
|
ralrimivvva |
⊢ ( 𝑅 ∈ Rng → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
24 |
1 23 8 17
|
islidl |
⊢ ( 𝐵 ∈ 𝑈 ↔ ( 𝐵 ⊆ ( Base ‘ 𝑅 ) ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) ) |
25 |
4 7 22 24
|
syl3anbrc |
⊢ ( 𝑅 ∈ Rng → 𝐵 ∈ 𝑈 ) |