Metamath Proof Explorer


Theorem rnglidl1

Description: The base set of every non-unital ring is an ideal. For unital rings, such ideals are called "unit ideals", see lidl1 . (Contributed by AV, 19-Feb-2025)

Ref Expression
Hypotheses rnglidl0.u 𝑈 = ( LIdeal ‘ 𝑅 )
rnglidl1.b 𝐵 = ( Base ‘ 𝑅 )
Assertion rnglidl1 ( 𝑅 ∈ Rng → 𝐵𝑈 )

Proof

Step Hyp Ref Expression
1 rnglidl0.u 𝑈 = ( LIdeal ‘ 𝑅 )
2 rnglidl1.b 𝐵 = ( Base ‘ 𝑅 )
3 2 eqimssi 𝐵 ⊆ ( Base ‘ 𝑅 )
4 3 a1i ( 𝑅 ∈ Rng → 𝐵 ⊆ ( Base ‘ 𝑅 ) )
5 rnggrp ( 𝑅 ∈ Rng → 𝑅 ∈ Grp )
6 2 grpbn0 ( 𝑅 ∈ Grp → 𝐵 ≠ ∅ )
7 5 6 syl ( 𝑅 ∈ Rng → 𝐵 ≠ ∅ )
8 eqid ( +g𝑅 ) = ( +g𝑅 )
9 5 adantr ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦𝐵𝑧𝐵 ) ) → 𝑅 ∈ Grp )
10 simpl ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦𝐵𝑧𝐵 ) ) → 𝑅 ∈ Rng )
11 2 eqcomi ( Base ‘ 𝑅 ) = 𝐵
12 11 eleq2i ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↔ 𝑥𝐵 )
13 12 biimpi ( 𝑥 ∈ ( Base ‘ 𝑅 ) → 𝑥𝐵 )
14 13 3ad2ant1 ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦𝐵𝑧𝐵 ) → 𝑥𝐵 )
15 14 adantl ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦𝐵𝑧𝐵 ) ) → 𝑥𝐵 )
16 simpr2 ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦𝐵𝑧𝐵 ) ) → 𝑦𝐵 )
17 eqid ( .r𝑅 ) = ( .r𝑅 )
18 2 17 rngcl ( ( 𝑅 ∈ Rng ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐵 )
19 10 15 16 18 syl3anc ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦𝐵𝑧𝐵 ) ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐵 )
20 simpr3 ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦𝐵𝑧𝐵 ) ) → 𝑧𝐵 )
21 2 8 9 19 20 grpcld ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦𝐵𝑧𝐵 ) ) → ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐵 )
22 21 ralrimivvva ( 𝑅 ∈ Rng → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦𝐵𝑧𝐵 ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐵 )
23 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
24 1 23 8 17 islidl ( 𝐵𝑈 ↔ ( 𝐵 ⊆ ( Base ‘ 𝑅 ) ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦𝐵𝑧𝐵 ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐵 ) )
25 4 7 22 24 syl3anbrc ( 𝑅 ∈ Rng → 𝐵𝑈 )