Metamath Proof Explorer


Theorem rhmqusspan

Description: Ring homomorphism out of a quotient given an ideal spanned by a singleton. (Contributed by metakunt, 7-Jun-2025)

Ref Expression
Hypotheses rhmqusspan.1 0 = ( 0g𝐻 )
rhmqusspan.2 ( 𝜑𝐹 ∈ ( 𝐺 RingHom 𝐻 ) )
rhmqusspan.3 𝐾 = ( 𝐹 “ { 0 } )
rhmqusspan.4 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
rhmqusspan.5 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
rhmqusspan.6 ( 𝜑𝐺 ∈ CRing )
rhmqusspan.7 𝑁 = ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } )
rhmqusspan.8 ( 𝜑𝑋 ∈ ( Base ‘ 𝐺 ) )
rhmqusspan.9 ( 𝜑 → ( 𝐹𝑋 ) = 0 )
Assertion rhmqusspan ( 𝜑 → ( 𝐽 ∈ ( 𝑄 RingHom 𝐻 ) ∧ ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ( 𝐽 ‘ [ 𝑔 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹𝑔 ) ) )

Proof

Step Hyp Ref Expression
1 rhmqusspan.1 0 = ( 0g𝐻 )
2 rhmqusspan.2 ( 𝜑𝐹 ∈ ( 𝐺 RingHom 𝐻 ) )
3 rhmqusspan.3 𝐾 = ( 𝐹 “ { 0 } )
4 rhmqusspan.4 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
5 rhmqusspan.5 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
6 rhmqusspan.6 ( 𝜑𝐺 ∈ CRing )
7 rhmqusspan.7 𝑁 = ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } )
8 rhmqusspan.8 ( 𝜑𝑋 ∈ ( Base ‘ 𝐺 ) )
9 rhmqusspan.9 ( 𝜑 → ( 𝐹𝑋 ) = 0 )
10 6 crngringd ( 𝜑𝐺 ∈ Ring )
11 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
12 eqid ( RSpan ‘ 𝐺 ) = ( RSpan ‘ 𝐺 )
13 eqid ( ∥r𝐺 ) = ( ∥r𝐺 )
14 11 12 13 rspsn ( ( 𝐺 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) = { 𝑦𝑋 ( ∥r𝐺 ) 𝑦 } )
15 10 8 14 syl2anc ( 𝜑 → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) = { 𝑦𝑋 ( ∥r𝐺 ) 𝑦 } )
16 15 eleq2d ( 𝜑 → ( 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ↔ 𝑥 ∈ { 𝑦𝑋 ( ∥r𝐺 ) 𝑦 } ) )
17 16 biimpd ( 𝜑 → ( 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) → 𝑥 ∈ { 𝑦𝑋 ( ∥r𝐺 ) 𝑦 } ) )
18 17 imp ( ( 𝜑𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → 𝑥 ∈ { 𝑦𝑋 ( ∥r𝐺 ) 𝑦 } )
19 vex 𝑥 ∈ V
20 19 a1i ( 𝜑𝑥 ∈ V )
21 breq2 ( 𝑦 = 𝑥 → ( 𝑋 ( ∥r𝐺 ) 𝑦𝑋 ( ∥r𝐺 ) 𝑥 ) )
22 21 elabg ( 𝑥 ∈ V → ( 𝑥 ∈ { 𝑦𝑋 ( ∥r𝐺 ) 𝑦 } ↔ 𝑋 ( ∥r𝐺 ) 𝑥 ) )
23 22 biimpd ( 𝑥 ∈ V → ( 𝑥 ∈ { 𝑦𝑋 ( ∥r𝐺 ) 𝑦 } → 𝑋 ( ∥r𝐺 ) 𝑥 ) )
24 20 23 syl ( 𝜑 → ( 𝑥 ∈ { 𝑦𝑋 ( ∥r𝐺 ) 𝑦 } → 𝑋 ( ∥r𝐺 ) 𝑥 ) )
25 24 imp ( ( 𝜑𝑥 ∈ { 𝑦𝑋 ( ∥r𝐺 ) 𝑦 } ) → 𝑋 ( ∥r𝐺 ) 𝑥 )
26 eqid ( .r𝐺 ) = ( .r𝐺 )
27 11 13 26 dvdsr ( 𝑋 ( ∥r𝐺 ) 𝑥 ↔ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) )
28 27 biimpi ( 𝑋 ( ∥r𝐺 ) 𝑥 → ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) )
29 28 adantl ( ( 𝜑𝑋 ( ∥r𝐺 ) 𝑥 ) → ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) )
30 fveq2 ( ( 𝑧 ( .r𝐺 ) 𝑋 ) = 𝑥 → ( 𝐹 ‘ ( 𝑧 ( .r𝐺 ) 𝑋 ) ) = ( 𝐹𝑥 ) )
31 30 eqcomd ( ( 𝑧 ( .r𝐺 ) 𝑋 ) = 𝑥 → ( 𝐹𝑥 ) = ( 𝐹 ‘ ( 𝑧 ( .r𝐺 ) 𝑋 ) ) )
32 31 adantl ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑧 ( .r𝐺 ) 𝑋 ) = 𝑥 ) → ( 𝐹𝑥 ) = ( 𝐹 ‘ ( 𝑧 ( .r𝐺 ) 𝑋 ) ) )
33 2 ad2antrr ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) )
34 simpr ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) )
35 8 ad2antrr ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → 𝑋 ∈ ( Base ‘ 𝐺 ) )
36 eqid ( .r𝐻 ) = ( .r𝐻 )
37 11 26 36 rhmmul ( ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑧 ( .r𝐺 ) 𝑋 ) ) = ( ( 𝐹𝑧 ) ( .r𝐻 ) ( 𝐹𝑋 ) ) )
38 33 34 35 37 syl3anc ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑧 ( .r𝐺 ) 𝑋 ) ) = ( ( 𝐹𝑧 ) ( .r𝐻 ) ( 𝐹𝑋 ) ) )
39 9 ad2antrr ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹𝑋 ) = 0 )
40 39 oveq2d ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐹𝑧 ) ( .r𝐻 ) ( 𝐹𝑋 ) ) = ( ( 𝐹𝑧 ) ( .r𝐻 ) 0 ) )
41 rhmrcl2 ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐻 ∈ Ring )
42 ringsrg ( 𝐻 ∈ Ring → 𝐻 ∈ SRing )
43 33 41 42 3syl ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → 𝐻 ∈ SRing )
44 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
45 11 44 rhmf ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) )
46 2 45 syl ( 𝜑𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) )
47 46 adantr ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) )
48 47 ffvelcdmda ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹𝑧 ) ∈ ( Base ‘ 𝐻 ) )
49 44 36 1 srgrz ( ( 𝐻 ∈ SRing ∧ ( 𝐹𝑧 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝐹𝑧 ) ( .r𝐻 ) 0 ) = 0 )
50 43 48 49 syl2anc ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐹𝑧 ) ( .r𝐻 ) 0 ) = 0 )
51 40 50 eqtrd ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐹𝑧 ) ( .r𝐻 ) ( 𝐹𝑋 ) ) = 0 )
52 38 51 eqtrd ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑧 ( .r𝐺 ) 𝑋 ) ) = 0 )
53 52 adantr ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑧 ( .r𝐺 ) 𝑋 ) = 𝑥 ) → ( 𝐹 ‘ ( 𝑧 ( .r𝐺 ) 𝑋 ) ) = 0 )
54 32 53 eqtrd ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑧 ( .r𝐺 ) 𝑋 ) = 𝑥 ) → ( 𝐹𝑥 ) = 0 )
55 nfv 𝑧 ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥
56 nfv 𝑦 ( 𝑧 ( .r𝐺 ) 𝑋 ) = 𝑥
57 oveq1 ( 𝑦 = 𝑧 → ( 𝑦 ( .r𝐺 ) 𝑋 ) = ( 𝑧 ( .r𝐺 ) 𝑋 ) )
58 57 eqeq1d ( 𝑦 = 𝑧 → ( ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ↔ ( 𝑧 ( .r𝐺 ) 𝑋 ) = 𝑥 ) )
59 55 56 58 cbvrexw ( ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ↔ ∃ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑧 ( .r𝐺 ) 𝑋 ) = 𝑥 )
60 59 biimpi ( ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 → ∃ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑧 ( .r𝐺 ) 𝑋 ) = 𝑥 )
61 60 adantl ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) → ∃ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑧 ( .r𝐺 ) 𝑋 ) = 𝑥 )
62 61 adantl ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) → ∃ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑧 ( .r𝐺 ) 𝑋 ) = 𝑥 )
63 54 62 r19.29a ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) ) → ( 𝐹𝑥 ) = 0 )
64 63 ex ( 𝜑 → ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) → ( 𝐹𝑥 ) = 0 ) )
65 64 adantr ( ( 𝜑𝑋 ( ∥r𝐺 ) 𝑥 ) → ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑋 ) = 𝑥 ) → ( 𝐹𝑥 ) = 0 ) )
66 29 65 mpd ( ( 𝜑𝑋 ( ∥r𝐺 ) 𝑥 ) → ( 𝐹𝑥 ) = 0 )
67 66 ex ( 𝜑 → ( 𝑋 ( ∥r𝐺 ) 𝑥 → ( 𝐹𝑥 ) = 0 ) )
68 67 adantr ( ( 𝜑𝑥 ∈ { 𝑦𝑋 ( ∥r𝐺 ) 𝑦 } ) → ( 𝑋 ( ∥r𝐺 ) 𝑥 → ( 𝐹𝑥 ) = 0 ) )
69 25 68 mpd ( ( 𝜑𝑥 ∈ { 𝑦𝑋 ( ∥r𝐺 ) 𝑦 } ) → ( 𝐹𝑥 ) = 0 )
70 69 ex ( 𝜑 → ( 𝑥 ∈ { 𝑦𝑋 ( ∥r𝐺 ) 𝑦 } → ( 𝐹𝑥 ) = 0 ) )
71 70 adantr ( ( 𝜑𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → ( 𝑥 ∈ { 𝑦𝑋 ( ∥r𝐺 ) 𝑦 } → ( 𝐹𝑥 ) = 0 ) )
72 18 71 mpd ( ( 𝜑𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → ( 𝐹𝑥 ) = 0 )
73 fvexd ( ( 𝜑𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → ( 𝐹𝑥 ) ∈ V )
74 elsng ( ( 𝐹𝑥 ) ∈ V → ( ( 𝐹𝑥 ) ∈ { 0 } ↔ ( 𝐹𝑥 ) = 0 ) )
75 73 74 syl ( ( 𝜑𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → ( ( 𝐹𝑥 ) ∈ { 0 } ↔ ( 𝐹𝑥 ) = 0 ) )
76 72 75 mpbird ( ( 𝜑𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → ( 𝐹𝑥 ) ∈ { 0 } )
77 46 ffund ( 𝜑 → Fun 𝐹 )
78 77 adantr ( ( 𝜑𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → Fun 𝐹 )
79 eqid ( LIdeal ‘ 𝐺 ) = ( LIdeal ‘ 𝐺 )
80 79 11 lidl1 ( 𝐺 ∈ Ring → ( Base ‘ 𝐺 ) ∈ ( LIdeal ‘ 𝐺 ) )
81 10 80 syl ( 𝜑 → ( Base ‘ 𝐺 ) ∈ ( LIdeal ‘ 𝐺 ) )
82 8 snssd ( 𝜑 → { 𝑋 } ⊆ ( Base ‘ 𝐺 ) )
83 12 79 rspssp ( ( 𝐺 ∈ Ring ∧ ( Base ‘ 𝐺 ) ∈ ( LIdeal ‘ 𝐺 ) ∧ { 𝑋 } ⊆ ( Base ‘ 𝐺 ) ) → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ⊆ ( Base ‘ 𝐺 ) )
84 10 81 82 83 syl3anc ( 𝜑 → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ⊆ ( Base ‘ 𝐺 ) )
85 84 sselda ( ( 𝜑𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
86 fdm ( 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) → dom 𝐹 = ( Base ‘ 𝐺 ) )
87 46 86 syl ( 𝜑 → dom 𝐹 = ( Base ‘ 𝐺 ) )
88 87 adantr ( ( 𝜑𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → dom 𝐹 = ( Base ‘ 𝐺 ) )
89 85 88 eleqtrrd ( ( 𝜑𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → 𝑥 ∈ dom 𝐹 )
90 fvimacnv ( ( Fun 𝐹𝑥 ∈ dom 𝐹 ) → ( ( 𝐹𝑥 ) ∈ { 0 } ↔ 𝑥 ∈ ( 𝐹 “ { 0 } ) ) )
91 78 89 90 syl2anc ( ( 𝜑𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → ( ( 𝐹𝑥 ) ∈ { 0 } ↔ 𝑥 ∈ ( 𝐹 “ { 0 } ) ) )
92 76 91 mpbid ( ( 𝜑𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → 𝑥 ∈ ( 𝐹 “ { 0 } ) )
93 92 ex ( 𝜑 → ( 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) → 𝑥 ∈ ( 𝐹 “ { 0 } ) ) )
94 93 ssrdv ( 𝜑 → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ⊆ ( 𝐹 “ { 0 } ) )
95 3 eqcomi ( 𝐹 “ { 0 } ) = 𝐾
96 94 95 sseqtrdi ( 𝜑 → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ⊆ 𝐾 )
97 7 96 eqsstrid ( 𝜑𝑁𝐾 )
98 12 11 79 rspcl ( ( 𝐺 ∈ Ring ∧ { 𝑋 } ⊆ ( Base ‘ 𝐺 ) ) → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝐺 ) )
99 10 82 98 syl2anc ( 𝜑 → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝐺 ) )
100 7 99 eqeltrid ( 𝜑𝑁 ∈ ( LIdeal ‘ 𝐺 ) )
101 1 2 3 4 5 6 97 100 rhmqusnsg ( 𝜑𝐽 ∈ ( 𝑄 RingHom 𝐻 ) )
102 2 adantr ( ( 𝜑𝑔 ∈ ( Base ‘ 𝐺 ) ) → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) )
103 rhmghm ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
104 102 103 syl ( ( 𝜑𝑔 ∈ ( Base ‘ 𝐺 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
105 97 adantr ( ( 𝜑𝑔 ∈ ( Base ‘ 𝐺 ) ) → 𝑁𝐾 )
106 lidlnsg ( ( 𝐺 ∈ Ring ∧ 𝑁 ∈ ( LIdeal ‘ 𝐺 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
107 10 100 106 syl2anc ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
108 107 adantr ( ( 𝜑𝑔 ∈ ( Base ‘ 𝐺 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
109 simpr ( ( 𝜑𝑔 ∈ ( Base ‘ 𝐺 ) ) → 𝑔 ∈ ( Base ‘ 𝐺 ) )
110 1 104 3 4 5 105 108 109 ghmqusnsglem1 ( ( 𝜑𝑔 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐽 ‘ [ 𝑔 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹𝑔 ) )
111 110 ralrimiva ( 𝜑 → ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ( 𝐽 ‘ [ 𝑔 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹𝑔 ) )
112 101 111 jca ( 𝜑 → ( 𝐽 ∈ ( 𝑄 RingHom 𝐻 ) ∧ ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ( 𝐽 ‘ [ 𝑔 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹𝑔 ) ) )