Step |
Hyp |
Ref |
Expression |
1 |
|
rhmqusspan.1 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
2 |
|
rhmqusspan.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ) |
3 |
|
rhmqusspan.3 |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
4 |
|
rhmqusspan.4 |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
5 |
|
rhmqusspan.5 |
⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
6 |
|
rhmqusspan.6 |
⊢ ( 𝜑 → 𝐺 ∈ CRing ) |
7 |
|
rhmqusspan.7 |
⊢ 𝑁 = ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) |
8 |
|
rhmqusspan.8 |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
9 |
|
rhmqusspan.9 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = 0 ) |
10 |
6
|
crngringd |
⊢ ( 𝜑 → 𝐺 ∈ Ring ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
12 |
|
eqid |
⊢ ( RSpan ‘ 𝐺 ) = ( RSpan ‘ 𝐺 ) |
13 |
|
eqid |
⊢ ( ∥r ‘ 𝐺 ) = ( ∥r ‘ 𝐺 ) |
14 |
11 12 13
|
rspsn |
⊢ ( ( 𝐺 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) = { 𝑦 ∣ 𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } ) |
15 |
10 8 14
|
syl2anc |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) = { 𝑦 ∣ 𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } ) |
16 |
15
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ↔ 𝑥 ∈ { 𝑦 ∣ 𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } ) ) |
17 |
16
|
biimpd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) → 𝑥 ∈ { 𝑦 ∣ 𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } ) ) |
18 |
17
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → 𝑥 ∈ { 𝑦 ∣ 𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } ) |
19 |
|
vex |
⊢ 𝑥 ∈ V |
20 |
19
|
a1i |
⊢ ( 𝜑 → 𝑥 ∈ V ) |
21 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑋 ( ∥r ‘ 𝐺 ) 𝑦 ↔ 𝑋 ( ∥r ‘ 𝐺 ) 𝑥 ) ) |
22 |
21
|
elabg |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ { 𝑦 ∣ 𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } ↔ 𝑋 ( ∥r ‘ 𝐺 ) 𝑥 ) ) |
23 |
22
|
biimpd |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ { 𝑦 ∣ 𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } → 𝑋 ( ∥r ‘ 𝐺 ) 𝑥 ) ) |
24 |
20 23
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑦 ∣ 𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } → 𝑋 ( ∥r ‘ 𝐺 ) 𝑥 ) ) |
25 |
24
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∣ 𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } ) → 𝑋 ( ∥r ‘ 𝐺 ) 𝑥 ) |
26 |
|
eqid |
⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝐺 ) |
27 |
11 13 26
|
dvdsr |
⊢ ( 𝑋 ( ∥r ‘ 𝐺 ) 𝑥 ↔ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) |
28 |
27
|
biimpi |
⊢ ( 𝑋 ( ∥r ‘ 𝐺 ) 𝑥 → ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ( ∥r ‘ 𝐺 ) 𝑥 ) → ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) |
30 |
|
fveq2 |
⊢ ( ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 → ( 𝐹 ‘ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
31 |
30
|
eqcomd |
⊢ ( ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) ) ) |
32 |
31
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) ) ) |
33 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ) |
34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) ) |
35 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
36 |
|
eqid |
⊢ ( .r ‘ 𝐻 ) = ( .r ‘ 𝐻 ) |
37 |
11 26 36
|
rhmmul |
⊢ ( ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
38 |
33 34 35 37
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
39 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ 𝑋 ) = 0 ) |
40 |
39
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐹 ‘ 𝑧 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( .r ‘ 𝐻 ) 0 ) ) |
41 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐻 ∈ Ring ) |
42 |
|
ringsrg |
⊢ ( 𝐻 ∈ Ring → 𝐻 ∈ SRing ) |
43 |
33 41 42
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → 𝐻 ∈ SRing ) |
44 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
45 |
11 44
|
rhmf |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
46 |
2 45
|
syl |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
48 |
47
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐻 ) ) |
49 |
44 36 1
|
srgrz |
⊢ ( ( 𝐻 ∈ SRing ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝐹 ‘ 𝑧 ) ( .r ‘ 𝐻 ) 0 ) = 0 ) |
50 |
43 48 49
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐹 ‘ 𝑧 ) ( .r ‘ 𝐻 ) 0 ) = 0 ) |
51 |
40 50
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐹 ‘ 𝑧 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) = 0 ) |
52 |
38 51
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) ) = 0 ) |
53 |
52
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) → ( 𝐹 ‘ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) ) = 0 ) |
54 |
32 53
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
55 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 |
56 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 |
57 |
|
oveq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) ) |
58 |
57
|
eqeq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ↔ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) |
59 |
55 56 58
|
cbvrexw |
⊢ ( ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ↔ ∃ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) |
60 |
59
|
biimpi |
⊢ ( ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 → ∃ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) |
61 |
60
|
adantl |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) → ∃ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) |
62 |
61
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) → ∃ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) |
63 |
54 62
|
r19.29a |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
64 |
63
|
ex |
⊢ ( 𝜑 → ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ( ∥r ‘ 𝐺 ) 𝑥 ) → ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 ) = 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
66 |
29 65
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑋 ( ∥r ‘ 𝐺 ) 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
67 |
66
|
ex |
⊢ ( 𝜑 → ( 𝑋 ( ∥r ‘ 𝐺 ) 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∣ 𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } ) → ( 𝑋 ( ∥r ‘ 𝐺 ) 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
69 |
25 68
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∣ 𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
70 |
69
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑦 ∣ 𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } → ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → ( 𝑥 ∈ { 𝑦 ∣ 𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } → ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
72 |
18 71
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
73 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑥 ) ∈ V ) |
74 |
|
elsng |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ V → ( ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
75 |
73 74
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
76 |
72 75
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
77 |
46
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → Fun 𝐹 ) |
79 |
|
eqid |
⊢ ( LIdeal ‘ 𝐺 ) = ( LIdeal ‘ 𝐺 ) |
80 |
79 11
|
lidl1 |
⊢ ( 𝐺 ∈ Ring → ( Base ‘ 𝐺 ) ∈ ( LIdeal ‘ 𝐺 ) ) |
81 |
10 80
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) ∈ ( LIdeal ‘ 𝐺 ) ) |
82 |
8
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ ( Base ‘ 𝐺 ) ) |
83 |
12 79
|
rspssp |
⊢ ( ( 𝐺 ∈ Ring ∧ ( Base ‘ 𝐺 ) ∈ ( LIdeal ‘ 𝐺 ) ∧ { 𝑋 } ⊆ ( Base ‘ 𝐺 ) ) → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ⊆ ( Base ‘ 𝐺 ) ) |
84 |
10 81 82 83
|
syl3anc |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ⊆ ( Base ‘ 𝐺 ) ) |
85 |
84
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
86 |
|
fdm |
⊢ ( 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) → dom 𝐹 = ( Base ‘ 𝐺 ) ) |
87 |
46 86
|
syl |
⊢ ( 𝜑 → dom 𝐹 = ( Base ‘ 𝐺 ) ) |
88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → dom 𝐹 = ( Base ‘ 𝐺 ) ) |
89 |
85 88
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → 𝑥 ∈ dom 𝐹 ) |
90 |
|
fvimacnv |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ↔ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) ) |
91 |
78 89 90
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ↔ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) ) |
92 |
76 91
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
93 |
92
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) → 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) ) |
94 |
93
|
ssrdv |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
95 |
3
|
eqcomi |
⊢ ( ◡ 𝐹 “ { 0 } ) = 𝐾 |
96 |
94 95
|
sseqtrdi |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ⊆ 𝐾 ) |
97 |
7 96
|
eqsstrid |
⊢ ( 𝜑 → 𝑁 ⊆ 𝐾 ) |
98 |
12 11 79
|
rspcl |
⊢ ( ( 𝐺 ∈ Ring ∧ { 𝑋 } ⊆ ( Base ‘ 𝐺 ) ) → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝐺 ) ) |
99 |
10 82 98
|
syl2anc |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝐺 ) ) |
100 |
7 99
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ( LIdeal ‘ 𝐺 ) ) |
101 |
1 2 3 4 5 6 97 100
|
rhmqusnsg |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 RingHom 𝐻 ) ) |
102 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝐺 ) ) → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ) |
103 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
104 |
102 103
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝐺 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
105 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝐺 ) ) → 𝑁 ⊆ 𝐾 ) |
106 |
|
lidlnsg |
⊢ ( ( 𝐺 ∈ Ring ∧ 𝑁 ∈ ( LIdeal ‘ 𝐺 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
107 |
10 100 106
|
syl2anc |
⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝐺 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
109 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝐺 ) ) → 𝑔 ∈ ( Base ‘ 𝐺 ) ) |
110 |
1 104 3 4 5 105 108 109
|
ghmqusnsglem1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐽 ‘ [ 𝑔 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ 𝑔 ) ) |
111 |
110
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ( 𝐽 ‘ [ 𝑔 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ 𝑔 ) ) |
112 |
101 111
|
jca |
⊢ ( 𝜑 → ( 𝐽 ∈ ( 𝑄 RingHom 𝐻 ) ∧ ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ( 𝐽 ‘ [ 𝑔 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ 𝑔 ) ) ) |