| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmqusspan.1 | ⊢  0   =  ( 0g ‘ 𝐻 ) | 
						
							| 2 |  | rhmqusspan.2 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐺  RingHom  𝐻 ) ) | 
						
							| 3 |  | rhmqusspan.3 | ⊢ 𝐾  =  ( ◡ 𝐹  “  {  0  } ) | 
						
							| 4 |  | rhmqusspan.4 | ⊢ 𝑄  =  ( 𝐺  /s  ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 5 |  | rhmqusspan.5 | ⊢ 𝐽  =  ( 𝑞  ∈  ( Base ‘ 𝑄 )  ↦  ∪  ( 𝐹  “  𝑞 ) ) | 
						
							| 6 |  | rhmqusspan.6 | ⊢ ( 𝜑  →  𝐺  ∈  CRing ) | 
						
							| 7 |  | rhmqusspan.7 | ⊢ 𝑁  =  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) | 
						
							| 8 |  | rhmqusspan.8 | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 9 |  | rhmqusspan.9 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  =   0  ) | 
						
							| 10 | 6 | crngringd | ⊢ ( 𝜑  →  𝐺  ∈  Ring ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 12 |  | eqid | ⊢ ( RSpan ‘ 𝐺 )  =  ( RSpan ‘ 𝐺 ) | 
						
							| 13 |  | eqid | ⊢ ( ∥r ‘ 𝐺 )  =  ( ∥r ‘ 𝐺 ) | 
						
							| 14 | 11 12 13 | rspsn | ⊢ ( ( 𝐺  ∈  Ring  ∧  𝑋  ∈  ( Base ‘ 𝐺 ) )  →  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } )  =  { 𝑦  ∣  𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } ) | 
						
							| 15 | 10 8 14 | syl2anc | ⊢ ( 𝜑  →  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } )  =  { 𝑦  ∣  𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } ) | 
						
							| 16 | 15 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } )  ↔  𝑥  ∈  { 𝑦  ∣  𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } ) ) | 
						
							| 17 | 16 | biimpd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } )  →  𝑥  ∈  { 𝑦  ∣  𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) )  →  𝑥  ∈  { 𝑦  ∣  𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } ) | 
						
							| 19 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  𝑥  ∈  V ) | 
						
							| 21 |  | breq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑋 ( ∥r ‘ 𝐺 ) 𝑦  ↔  𝑋 ( ∥r ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 22 | 21 | elabg | ⊢ ( 𝑥  ∈  V  →  ( 𝑥  ∈  { 𝑦  ∣  𝑋 ( ∥r ‘ 𝐺 ) 𝑦 }  ↔  𝑋 ( ∥r ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 23 | 22 | biimpd | ⊢ ( 𝑥  ∈  V  →  ( 𝑥  ∈  { 𝑦  ∣  𝑋 ( ∥r ‘ 𝐺 ) 𝑦 }  →  𝑋 ( ∥r ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 24 | 20 23 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑦  ∣  𝑋 ( ∥r ‘ 𝐺 ) 𝑦 }  →  𝑋 ( ∥r ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑦  ∣  𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } )  →  𝑋 ( ∥r ‘ 𝐺 ) 𝑥 ) | 
						
							| 26 |  | eqid | ⊢ ( .r ‘ 𝐺 )  =  ( .r ‘ 𝐺 ) | 
						
							| 27 | 11 13 26 | dvdsr | ⊢ ( 𝑋 ( ∥r ‘ 𝐺 ) 𝑥  ↔  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) ) | 
						
							| 28 | 27 | biimpi | ⊢ ( 𝑋 ( ∥r ‘ 𝐺 ) 𝑥  →  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝜑  ∧  𝑋 ( ∥r ‘ 𝐺 ) 𝑥 )  →  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥  →  ( 𝐹 ‘ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 31 | 30 | eqcomd | ⊢ ( ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) ) ) | 
						
							| 33 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  𝐹  ∈  ( 𝐺  RingHom  𝐻 ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  𝑧  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 35 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  𝑋  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 36 |  | eqid | ⊢ ( .r ‘ 𝐻 )  =  ( .r ‘ 𝐻 ) | 
						
							| 37 | 11 26 36 | rhmmul | ⊢ ( ( 𝐹  ∈  ( 𝐺  RingHom  𝐻 )  ∧  𝑧  ∈  ( Base ‘ 𝐺 )  ∧  𝑋  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐹 ‘ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 38 | 33 34 35 37 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐹 ‘ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 39 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐹 ‘ 𝑋 )  =   0  ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  ( ( 𝐹 ‘ 𝑧 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( .r ‘ 𝐻 )  0  ) ) | 
						
							| 41 |  | rhmrcl2 | ⊢ ( 𝐹  ∈  ( 𝐺  RingHom  𝐻 )  →  𝐻  ∈  Ring ) | 
						
							| 42 |  | ringsrg | ⊢ ( 𝐻  ∈  Ring  →  𝐻  ∈  SRing ) | 
						
							| 43 | 33 41 42 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  𝐻  ∈  SRing ) | 
						
							| 44 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 45 | 11 44 | rhmf | ⊢ ( 𝐹  ∈  ( 𝐺  RingHom  𝐻 )  →  𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 46 | 2 45 | syl | ⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  →  𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 48 | 47 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 49 | 44 36 1 | srgrz | ⊢ ( ( 𝐻  ∈  SRing  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ( Base ‘ 𝐻 ) )  →  ( ( 𝐹 ‘ 𝑧 ) ( .r ‘ 𝐻 )  0  )  =   0  ) | 
						
							| 50 | 43 48 49 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  ( ( 𝐹 ‘ 𝑧 ) ( .r ‘ 𝐻 )  0  )  =   0  ) | 
						
							| 51 | 40 50 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  ( ( 𝐹 ‘ 𝑧 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) )  =   0  ) | 
						
							| 52 | 38 51 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐹 ‘ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) )  =   0  ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 )  →  ( 𝐹 ‘ ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) )  =   0  ) | 
						
							| 54 | 32 53 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 )  →  ( 𝐹 ‘ 𝑥 )  =   0  ) | 
						
							| 55 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 | 
						
							| 56 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 | 
						
							| 57 |  | oveq1 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 ) ) | 
						
							| 58 | 57 | eqeq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥  ↔  ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) ) | 
						
							| 59 | 55 56 58 | cbvrexw | ⊢ ( ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥  ↔  ∃ 𝑧  ∈  ( Base ‘ 𝐺 ) ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) | 
						
							| 60 | 59 | biimpi | ⊢ ( ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥  →  ∃ 𝑧  ∈  ( Base ‘ 𝐺 ) ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 )  →  ∃ 𝑧  ∈  ( Base ‘ 𝐺 ) ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  →  ∃ 𝑧  ∈  ( Base ‘ 𝐺 ) ( 𝑧 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) | 
						
							| 63 | 54 62 | r19.29a | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 ) )  →  ( 𝐹 ‘ 𝑥 )  =   0  ) | 
						
							| 64 | 63 | ex | ⊢ ( 𝜑  →  ( ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 )  →  ( 𝐹 ‘ 𝑥 )  =   0  ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝜑  ∧  𝑋 ( ∥r ‘ 𝐺 ) 𝑥 )  →  ( ( 𝑋  ∈  ( Base ‘ 𝐺 )  ∧  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑋 )  =  𝑥 )  →  ( 𝐹 ‘ 𝑥 )  =   0  ) ) | 
						
							| 66 | 29 65 | mpd | ⊢ ( ( 𝜑  ∧  𝑋 ( ∥r ‘ 𝐺 ) 𝑥 )  →  ( 𝐹 ‘ 𝑥 )  =   0  ) | 
						
							| 67 | 66 | ex | ⊢ ( 𝜑  →  ( 𝑋 ( ∥r ‘ 𝐺 ) 𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑦  ∣  𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } )  →  ( 𝑋 ( ∥r ‘ 𝐺 ) 𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  ) ) | 
						
							| 69 | 25 68 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑦  ∣  𝑋 ( ∥r ‘ 𝐺 ) 𝑦 } )  →  ( 𝐹 ‘ 𝑥 )  =   0  ) | 
						
							| 70 | 69 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑦  ∣  𝑋 ( ∥r ‘ 𝐺 ) 𝑦 }  →  ( 𝐹 ‘ 𝑥 )  =   0  ) ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) )  →  ( 𝑥  ∈  { 𝑦  ∣  𝑋 ( ∥r ‘ 𝐺 ) 𝑦 }  →  ( 𝐹 ‘ 𝑥 )  =   0  ) ) | 
						
							| 72 | 18 71 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) )  →  ( 𝐹 ‘ 𝑥 )  =   0  ) | 
						
							| 73 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  V ) | 
						
							| 74 |  | elsng | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  V  →  ( ( 𝐹 ‘ 𝑥 )  ∈  {  0  }  ↔  ( 𝐹 ‘ 𝑥 )  =   0  ) ) | 
						
							| 75 | 73 74 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  {  0  }  ↔  ( 𝐹 ‘ 𝑥 )  =   0  ) ) | 
						
							| 76 | 72 75 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  {  0  } ) | 
						
							| 77 | 46 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) )  →  Fun  𝐹 ) | 
						
							| 79 |  | eqid | ⊢ ( LIdeal ‘ 𝐺 )  =  ( LIdeal ‘ 𝐺 ) | 
						
							| 80 | 79 11 | lidl1 | ⊢ ( 𝐺  ∈  Ring  →  ( Base ‘ 𝐺 )  ∈  ( LIdeal ‘ 𝐺 ) ) | 
						
							| 81 | 10 80 | syl | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  ∈  ( LIdeal ‘ 𝐺 ) ) | 
						
							| 82 | 8 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 83 | 12 79 | rspssp | ⊢ ( ( 𝐺  ∈  Ring  ∧  ( Base ‘ 𝐺 )  ∈  ( LIdeal ‘ 𝐺 )  ∧  { 𝑋 }  ⊆  ( Base ‘ 𝐺 ) )  →  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } )  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 84 | 10 81 82 83 | syl3anc | ⊢ ( 𝜑  →  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } )  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 85 | 84 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) )  →  𝑥  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 86 |  | fdm | ⊢ ( 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 )  →  dom  𝐹  =  ( Base ‘ 𝐺 ) ) | 
						
							| 87 | 46 86 | syl | ⊢ ( 𝜑  →  dom  𝐹  =  ( Base ‘ 𝐺 ) ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) )  →  dom  𝐹  =  ( Base ‘ 𝐺 ) ) | 
						
							| 89 | 85 88 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) )  →  𝑥  ∈  dom  𝐹 ) | 
						
							| 90 |  | fvimacnv | ⊢ ( ( Fun  𝐹  ∧  𝑥  ∈  dom  𝐹 )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  {  0  }  ↔  𝑥  ∈  ( ◡ 𝐹  “  {  0  } ) ) ) | 
						
							| 91 | 78 89 90 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  {  0  }  ↔  𝑥  ∈  ( ◡ 𝐹  “  {  0  } ) ) ) | 
						
							| 92 | 76 91 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } ) )  →  𝑥  ∈  ( ◡ 𝐹  “  {  0  } ) ) | 
						
							| 93 | 92 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } )  →  𝑥  ∈  ( ◡ 𝐹  “  {  0  } ) ) ) | 
						
							| 94 | 93 | ssrdv | ⊢ ( 𝜑  →  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } )  ⊆  ( ◡ 𝐹  “  {  0  } ) ) | 
						
							| 95 | 3 | eqcomi | ⊢ ( ◡ 𝐹  “  {  0  } )  =  𝐾 | 
						
							| 96 | 94 95 | sseqtrdi | ⊢ ( 𝜑  →  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } )  ⊆  𝐾 ) | 
						
							| 97 | 7 96 | eqsstrid | ⊢ ( 𝜑  →  𝑁  ⊆  𝐾 ) | 
						
							| 98 | 12 11 79 | rspcl | ⊢ ( ( 𝐺  ∈  Ring  ∧  { 𝑋 }  ⊆  ( Base ‘ 𝐺 ) )  →  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } )  ∈  ( LIdeal ‘ 𝐺 ) ) | 
						
							| 99 | 10 82 98 | syl2anc | ⊢ ( 𝜑  →  ( ( RSpan ‘ 𝐺 ) ‘ { 𝑋 } )  ∈  ( LIdeal ‘ 𝐺 ) ) | 
						
							| 100 | 7 99 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ( LIdeal ‘ 𝐺 ) ) | 
						
							| 101 | 1 2 3 4 5 6 97 100 | rhmqusnsg | ⊢ ( 𝜑  →  𝐽  ∈  ( 𝑄  RingHom  𝐻 ) ) | 
						
							| 102 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝐺 ) )  →  𝐹  ∈  ( 𝐺  RingHom  𝐻 ) ) | 
						
							| 103 |  | rhmghm | ⊢ ( 𝐹  ∈  ( 𝐺  RingHom  𝐻 )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 104 | 102 103 | syl | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝐺 ) )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 105 | 97 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝐺 ) )  →  𝑁  ⊆  𝐾 ) | 
						
							| 106 |  | lidlnsg | ⊢ ( ( 𝐺  ∈  Ring  ∧  𝑁  ∈  ( LIdeal ‘ 𝐺 ) )  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 107 | 10 100 106 | syl2anc | ⊢ ( 𝜑  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝐺 ) )  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 109 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝐺 ) )  →  𝑔  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 110 | 1 104 3 4 5 105 108 109 | ghmqusnsglem1 | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐽 ‘ [ 𝑔 ] ( 𝐺  ~QG  𝑁 ) )  =  ( 𝐹 ‘ 𝑔 ) ) | 
						
							| 111 | 110 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑔  ∈  ( Base ‘ 𝐺 ) ( 𝐽 ‘ [ 𝑔 ] ( 𝐺  ~QG  𝑁 ) )  =  ( 𝐹 ‘ 𝑔 ) ) | 
						
							| 112 | 101 111 | jca | ⊢ ( 𝜑  →  ( 𝐽  ∈  ( 𝑄  RingHom  𝐻 )  ∧  ∀ 𝑔  ∈  ( Base ‘ 𝐺 ) ( 𝐽 ‘ [ 𝑔 ] ( 𝐺  ~QG  𝑁 ) )  =  ( 𝐹 ‘ 𝑔 ) ) ) |