Step |
Hyp |
Ref |
Expression |
1 |
|
aks5lema.1 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
2 |
|
aks5lema.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks5lema.3 |
⊢ ( 𝜑 → ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁 ) ) |
4 |
|
aks5lema.9 |
⊢ 𝐵 = ( 𝑆 /s ( 𝑆 ~QG 𝐿 ) ) |
5 |
|
aks5lema.10 |
⊢ 𝐿 = ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } ) |
6 |
|
aks5lema.11 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
7 |
|
aks5lema.14 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
8 |
|
aks5lema.15 |
⊢ 𝑆 = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
9 |
|
aks5lem4a.7 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
10 |
|
aks5lem4a.12 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
11 |
|
aks5lem4a.13 |
⊢ ( 𝜑 → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
12 |
|
eqid |
⊢ ( 𝑏 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↦ ( ( 𝑎 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ∪ ( ( ℤRHom ‘ 𝐾 ) “ 𝑎 ) ) ∘ 𝑏 ) ) = ( 𝑏 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↦ ( ( 𝑎 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ∪ ( ( ℤRHom ‘ 𝐾 ) “ 𝑎 ) ) ∘ 𝑏 ) ) |
13 |
|
eqid |
⊢ ( 𝑎 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ∪ ( ( ℤRHom ‘ 𝐾 ) “ 𝑎 ) ) = ( 𝑎 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ∪ ( ( ℤRHom ‘ 𝐾 ) “ 𝑎 ) ) |
14 |
|
eqid |
⊢ ( 𝑐 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑐 ) ‘ 𝑀 ) ) = ( 𝑐 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑐 ) ‘ 𝑀 ) ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑑 ∪ ( ( ( 𝑐 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑐 ) ‘ 𝑀 ) ) ∘ ( 𝑏 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↦ ( ( 𝑎 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ∪ ( ( ℤRHom ‘ 𝐾 ) “ 𝑎 ) ) ∘ 𝑏 ) ) ) “ 𝑒 ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑒 ∪ ( ( ( 𝑐 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑐 ) ‘ 𝑀 ) ) ∘ ( 𝑏 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↦ ( ( 𝑎 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ∪ ( ( ℤRHom ‘ 𝐾 ) “ 𝑎 ) ) ∘ 𝑏 ) ) ) “ 𝑑 ) |
17 |
|
imaeq2 |
⊢ ( 𝑒 = 𝑑 → ( ( ( 𝑐 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑐 ) ‘ 𝑀 ) ) ∘ ( 𝑏 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↦ ( ( 𝑎 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ∪ ( ( ℤRHom ‘ 𝐾 ) “ 𝑎 ) ) ∘ 𝑏 ) ) ) “ 𝑒 ) = ( ( ( 𝑐 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑐 ) ‘ 𝑀 ) ) ∘ ( 𝑏 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↦ ( ( 𝑎 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ∪ ( ( ℤRHom ‘ 𝐾 ) “ 𝑎 ) ) ∘ 𝑏 ) ) ) “ 𝑑 ) ) |
18 |
17
|
unieqd |
⊢ ( 𝑒 = 𝑑 → ∪ ( ( ( 𝑐 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑐 ) ‘ 𝑀 ) ) ∘ ( 𝑏 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↦ ( ( 𝑎 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ∪ ( ( ℤRHom ‘ 𝐾 ) “ 𝑎 ) ) ∘ 𝑏 ) ) ) “ 𝑒 ) = ∪ ( ( ( 𝑐 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑐 ) ‘ 𝑀 ) ) ∘ ( 𝑏 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↦ ( ( 𝑎 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ∪ ( ( ℤRHom ‘ 𝐾 ) “ 𝑎 ) ) ∘ 𝑏 ) ) ) “ 𝑑 ) ) |
19 |
15 16 18
|
cbvmpt |
⊢ ( 𝑒 ∈ ( Base ‘ 𝐵 ) ↦ ∪ ( ( ( 𝑐 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑐 ) ‘ 𝑀 ) ) ∘ ( 𝑏 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↦ ( ( 𝑎 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ∪ ( ( ℤRHom ‘ 𝐾 ) “ 𝑎 ) ) ∘ 𝑏 ) ) ) “ 𝑒 ) ) = ( 𝑑 ∈ ( Base ‘ 𝐵 ) ↦ ∪ ( ( ( 𝑐 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑐 ) ‘ 𝑀 ) ) ∘ ( 𝑏 ∈ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↦ ( ( 𝑎 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ ∪ ( ( ℤRHom ‘ 𝐾 ) “ 𝑎 ) ) ∘ 𝑏 ) ) ) “ 𝑑 ) ) |
20 |
1 2 3 4 5 6 7 8 12 13 14 9 19 10 11
|
aks5lem3a |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |