| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks5lema.1 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 2 |
|
aks5lema.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
| 3 |
|
aks5lema.3 |
⊢ ( 𝜑 → ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁 ) ) |
| 4 |
|
aks5lema.9 |
⊢ 𝐵 = ( 𝑆 /s ( 𝑆 ~QG 𝐿 ) ) |
| 5 |
|
aks5lema.10 |
⊢ 𝐿 = ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } ) |
| 6 |
|
aks5lema.11 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 7 |
|
aks5lema.14 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
| 8 |
|
aks5lema.15 |
⊢ 𝑆 = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
| 9 |
|
aks5lem5a.13 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
| 10 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) ∧ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → 𝐾 ∈ Field ) |
| 11 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) ∧ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁 ) ) |
| 12 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) ∧ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → 𝑅 ∈ ℕ ) |
| 13 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) ∧ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
| 14 |
|
elfzelz |
⊢ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑎 ∈ ℤ ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → 𝑎 ∈ ℤ ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → 𝑎 ∈ ℤ ) |
| 17 |
16
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) ∧ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → 𝑎 ∈ ℤ ) |
| 18 |
|
eqid |
⊢ ( algSc ‘ 𝑆 ) = ( algSc ‘ 𝑆 ) |
| 19 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑆 ) = ( ℤRHom ‘ 𝑆 ) |
| 20 |
|
eqid |
⊢ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
| 21 |
3
|
simp2d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → 𝑁 ∈ ℕ ) |
| 23 |
22
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → 𝑁 ∈ ℕ0 ) |
| 24 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑁 ) = ( ℤ/nℤ ‘ 𝑁 ) |
| 25 |
24
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤ/nℤ ‘ 𝑁 ) ∈ CRing ) |
| 26 |
23 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( ℤ/nℤ ‘ 𝑁 ) ∈ CRing ) |
| 27 |
8 18 19 20 26 15
|
ply1asclzrhval |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑎 ) ) = ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) |
| 28 |
27
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑎 ) ) ) = ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) |
| 29 |
28
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑎 ) ) ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ) |
| 30 |
29
|
eceq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑎 ) ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑎 ) ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
| 32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
| 33 |
27
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) = ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑎 ) ) ) |
| 34 |
33
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑎 ) ) ) ) |
| 35 |
34
|
eceq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
| 37 |
31 32 36
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑎 ) ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) ∧ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑎 ) ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( algSc ‘ 𝑆 ) ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
| 39 |
10 2 11 4 5 12 7 8 13 17 38
|
aks5lem4a |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) ∧ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) |
| 40 |
39
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) |
| 41 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
| 42 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) = ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) |
| 43 |
|
eqid |
⊢ ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) = ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) |
| 44 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 ) |
| 45 |
1
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → 𝐾 ∈ CRing ) |
| 47 |
41 42 43 44 46 15
|
ply1asclzrhval |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) = ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝑎 ) ) |
| 48 |
47
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) = ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝑎 ) ) ) |
| 49 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
| 50 |
|
eqid |
⊢ ( +g ‘ ( Poly1 ‘ 𝐾 ) ) = ( +g ‘ ( Poly1 ‘ 𝐾 ) ) |
| 51 |
41
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
| 52 |
45 51
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
| 54 |
|
crngring |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ CRing → ( Poly1 ‘ 𝐾 ) ∈ Ring ) |
| 55 |
53 54
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( Poly1 ‘ 𝐾 ) ∈ Ring ) |
| 56 |
55
|
ringgrpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( Poly1 ‘ 𝐾 ) ∈ Grp ) |
| 57 |
46
|
crngringd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → 𝐾 ∈ Ring ) |
| 58 |
|
eqid |
⊢ ( var1 ‘ 𝐾 ) = ( var1 ‘ 𝐾 ) |
| 59 |
58 41 49
|
vr1cl |
⊢ ( 𝐾 ∈ Ring → ( var1 ‘ 𝐾 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 60 |
57 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( var1 ‘ 𝐾 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 61 |
43
|
zrhrhm |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ Ring → ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ∈ ( ℤring RingHom ( Poly1 ‘ 𝐾 ) ) ) |
| 62 |
55 61
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ∈ ( ℤring RingHom ( Poly1 ‘ 𝐾 ) ) ) |
| 63 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 64 |
63 49
|
rhmf |
⊢ ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ∈ ( ℤring RingHom ( Poly1 ‘ 𝐾 ) ) → ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) : ℤ ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 65 |
62 64
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) : ℤ ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 66 |
65 15
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝑎 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 67 |
49 50 56 60 66
|
grpcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ℤRHom ‘ ( Poly1 ‘ 𝐾 ) ) ‘ 𝑎 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 68 |
48 67
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 69 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 70 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → 𝑁 ∈ ℕ ) |
| 71 |
7 69 70
|
aks6d1c1p1 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → ( 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ↔ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ‘ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) ) |
| 72 |
40 71
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 73 |
72
|
ex |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) → 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
| 74 |
73
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ ( 1 ... 𝐴 ) [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
| 75 |
9 74
|
mpd |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |