Step |
Hyp |
Ref |
Expression |
1 |
|
aks5lem6.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
2 |
|
aks5lem6.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks5lem6.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
4 |
|
aks5lem6.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
aks5lem6.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
6 |
|
aks5lem6.6 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
7 |
|
aks5lem6.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
8 |
|
aks5lem6.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
9 |
|
aks5lem6.9 |
⊢ 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) |
10 |
|
aks5lem6.10 |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
11 |
|
aks5lem6.11 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
12 |
|
aks5lem6.12 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
13 |
|
aks5lem6.13 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 ) |
14 |
|
aks5lem6.14 |
⊢ 𝑆 = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
15 |
|
aks5lem6.15 |
⊢ 𝐿 = ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } ) |
16 |
|
aks5lem6.16 |
⊢ 𝑋 = ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
17 |
|
aks5lem6.17 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
18 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
19 |
6 18
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
20 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
21 |
|
3re |
⊢ 3 ∈ ℝ |
22 |
21
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
23 |
19
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
24 |
|
3pos |
⊢ 0 < 3 |
25 |
24
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
26 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
27 |
6 26
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
28 |
20 22 23 25 27
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
29 |
19 28
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
30 |
|
elnnz |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
31 |
29 30
|
sylibr |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
32 |
4 31 7
|
3jca |
⊢ ( 𝜑 → ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁 ) ) |
33 |
|
eqid |
⊢ ( 𝑆 /s ( 𝑆 ~QG 𝐿 ) ) = ( 𝑆 /s ( 𝑆 ~QG 𝐿 ) ) |
34 |
16
|
eqcomi |
⊢ ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = 𝑋 |
35 |
34
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = 𝑋 ) |
36 |
35
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) = ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) |
37 |
36
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ) |
38 |
37
|
eceq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
39 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
40 |
|
eqcom |
⊢ ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = 𝑋 ↔ 𝑋 = ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
41 |
40
|
imbi2i |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = 𝑋 ) ↔ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → 𝑋 = ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
42 |
35 41
|
mpbi |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → 𝑋 = ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
43 |
42
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
44 |
43
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) |
45 |
44
|
eceq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
46 |
38 39 45
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) ∧ [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
47 |
46
|
ex |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝐴 ) ) → ( [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) → [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) ) |
48 |
47
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ ( 1 ... 𝐴 ) [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) ) |
49 |
17 48
|
mpd |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
50 |
3 2 32 33 15 5 1 14 49
|
aks5lem5a |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 50
|
aks6d1c7 |
⊢ ( 𝜑 → 𝑁 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) |