Step |
Hyp |
Ref |
Expression |
1 |
|
aks5lem6.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } |
2 |
|
aks5lem6.2 |
|- P = ( chr ` K ) |
3 |
|
aks5lem6.3 |
|- ( ph -> K e. Field ) |
4 |
|
aks5lem6.4 |
|- ( ph -> P e. Prime ) |
5 |
|
aks5lem6.5 |
|- ( ph -> R e. NN ) |
6 |
|
aks5lem6.6 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
7 |
|
aks5lem6.7 |
|- ( ph -> P || N ) |
8 |
|
aks5lem6.8 |
|- ( ph -> ( N gcd R ) = 1 ) |
9 |
|
aks5lem6.9 |
|- A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) |
10 |
|
aks5lem6.10 |
|- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) |
11 |
|
aks5lem6.11 |
|- ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
12 |
|
aks5lem6.12 |
|- ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
13 |
|
aks5lem6.13 |
|- ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) |
14 |
|
aks5lem6.14 |
|- S = ( Poly1 ` ( Z/nZ ` N ) ) |
15 |
|
aks5lem6.15 |
|- L = ( ( RSpan ` S ) ` { ( ( R ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( -g ` S ) ( 1r ` S ) ) } ) |
16 |
|
aks5lem6.16 |
|- X = ( var1 ` ( Z/nZ ` N ) ) |
17 |
|
aks5lem6.17 |
|- ( ph -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) |
18 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
19 |
6 18
|
syl |
|- ( ph -> N e. ZZ ) |
20 |
|
0red |
|- ( ph -> 0 e. RR ) |
21 |
|
3re |
|- 3 e. RR |
22 |
21
|
a1i |
|- ( ph -> 3 e. RR ) |
23 |
19
|
zred |
|- ( ph -> N e. RR ) |
24 |
|
3pos |
|- 0 < 3 |
25 |
24
|
a1i |
|- ( ph -> 0 < 3 ) |
26 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
27 |
6 26
|
syl |
|- ( ph -> 3 <_ N ) |
28 |
20 22 23 25 27
|
ltletrd |
|- ( ph -> 0 < N ) |
29 |
19 28
|
jca |
|- ( ph -> ( N e. ZZ /\ 0 < N ) ) |
30 |
|
elnnz |
|- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |
31 |
29 30
|
sylibr |
|- ( ph -> N e. NN ) |
32 |
4 31 7
|
3jca |
|- ( ph -> ( P e. Prime /\ N e. NN /\ P || N ) ) |
33 |
|
eqid |
|- ( S /s ( S ~QG L ) ) = ( S /s ( S ~QG L ) ) |
34 |
16
|
eqcomi |
|- ( var1 ` ( Z/nZ ` N ) ) = X |
35 |
34
|
a1i |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( var1 ` ( Z/nZ ` N ) ) = X ) |
36 |
35
|
oveq1d |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) = ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) |
37 |
36
|
oveq2d |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) = ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ) |
38 |
37
|
eceq1d |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) ) |
39 |
|
simpr |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) |
40 |
|
eqcom |
|- ( ( var1 ` ( Z/nZ ` N ) ) = X <-> X = ( var1 ` ( Z/nZ ` N ) ) ) |
41 |
40
|
imbi2i |
|- ( ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( var1 ` ( Z/nZ ` N ) ) = X ) <-> ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> X = ( var1 ` ( Z/nZ ` N ) ) ) ) |
42 |
35 41
|
mpbi |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> X = ( var1 ` ( Z/nZ ` N ) ) ) |
43 |
42
|
oveq2d |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( N ( .g ` ( mulGrp ` S ) ) X ) = ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ) |
44 |
43
|
oveq1d |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) = ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) |
45 |
44
|
eceq1d |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) |
46 |
38 39 45
|
3eqtrd |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) |
47 |
46
|
ex |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) ) |
48 |
47
|
ralimdva |
|- ( ph -> ( A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) ) |
49 |
17 48
|
mpd |
|- ( ph -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) |
50 |
3 2 32 33 15 5 1 14 49
|
aks5lem5a |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 50
|
aks6d1c7 |
|- ( ph -> N = ( P ^ ( P pCnt N ) ) ) |