| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks5lem6.1 |  |-  .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } | 
						
							| 2 |  | aks5lem6.2 |  |-  P = ( chr ` K ) | 
						
							| 3 |  | aks5lem6.3 |  |-  ( ph -> K e. Field ) | 
						
							| 4 |  | aks5lem6.4 |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | aks5lem6.5 |  |-  ( ph -> R e. NN ) | 
						
							| 6 |  | aks5lem6.6 |  |-  ( ph -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 7 |  | aks5lem6.7 |  |-  ( ph -> P || N ) | 
						
							| 8 |  | aks5lem6.8 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 9 |  | aks5lem6.9 |  |-  A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) | 
						
							| 10 |  | aks5lem6.10 |  |-  ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) | 
						
							| 11 |  | aks5lem6.11 |  |-  ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) | 
						
							| 12 |  | aks5lem6.12 |  |-  ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) | 
						
							| 13 |  | aks5lem6.13 |  |-  ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) | 
						
							| 14 |  | aks5lem6.14 |  |-  S = ( Poly1 ` ( Z/nZ ` N ) ) | 
						
							| 15 |  | aks5lem6.15 |  |-  L = ( ( RSpan ` S ) ` { ( ( R ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( -g ` S ) ( 1r ` S ) ) } ) | 
						
							| 16 |  | aks5lem6.16 |  |-  X = ( var1 ` ( Z/nZ ` N ) ) | 
						
							| 17 |  | aks5lem6.17 |  |-  ( ph -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) | 
						
							| 18 |  | eluzelz |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) | 
						
							| 19 | 6 18 | syl |  |-  ( ph -> N e. ZZ ) | 
						
							| 20 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 21 |  | 3re |  |-  3 e. RR | 
						
							| 22 | 21 | a1i |  |-  ( ph -> 3 e. RR ) | 
						
							| 23 | 19 | zred |  |-  ( ph -> N e. RR ) | 
						
							| 24 |  | 3pos |  |-  0 < 3 | 
						
							| 25 | 24 | a1i |  |-  ( ph -> 0 < 3 ) | 
						
							| 26 |  | eluzle |  |-  ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) | 
						
							| 27 | 6 26 | syl |  |-  ( ph -> 3 <_ N ) | 
						
							| 28 | 20 22 23 25 27 | ltletrd |  |-  ( ph -> 0 < N ) | 
						
							| 29 | 19 28 | jca |  |-  ( ph -> ( N e. ZZ /\ 0 < N ) ) | 
						
							| 30 |  | elnnz |  |-  ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) | 
						
							| 31 | 29 30 | sylibr |  |-  ( ph -> N e. NN ) | 
						
							| 32 | 4 31 7 | 3jca |  |-  ( ph -> ( P e. Prime /\ N e. NN /\ P || N ) ) | 
						
							| 33 |  | eqid |  |-  ( S /s ( S ~QG L ) ) = ( S /s ( S ~QG L ) ) | 
						
							| 34 | 16 | eqcomi |  |-  ( var1 ` ( Z/nZ ` N ) ) = X | 
						
							| 35 | 34 | a1i |  |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( var1 ` ( Z/nZ ` N ) ) = X ) | 
						
							| 36 | 35 | oveq1d |  |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) = ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) | 
						
							| 37 | 36 | oveq2d |  |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) = ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ) | 
						
							| 38 | 37 | eceq1d |  |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) ) | 
						
							| 39 |  | simpr |  |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) | 
						
							| 40 |  | eqcom |  |-  ( ( var1 ` ( Z/nZ ` N ) ) = X <-> X = ( var1 ` ( Z/nZ ` N ) ) ) | 
						
							| 41 | 40 | imbi2i |  |-  ( ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( var1 ` ( Z/nZ ` N ) ) = X ) <-> ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> X = ( var1 ` ( Z/nZ ` N ) ) ) ) | 
						
							| 42 | 35 41 | mpbi |  |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> X = ( var1 ` ( Z/nZ ` N ) ) ) | 
						
							| 43 | 42 | oveq2d |  |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( N ( .g ` ( mulGrp ` S ) ) X ) = ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) = ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) | 
						
							| 45 | 44 | eceq1d |  |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) | 
						
							| 46 | 38 39 45 | 3eqtrd |  |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) | 
						
							| 47 | 46 | ex |  |-  ( ( ph /\ a e. ( 1 ... A ) ) -> ( [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) ) | 
						
							| 48 | 47 | ralimdva |  |-  ( ph -> ( A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) ) | 
						
							| 49 | 17 48 | mpd |  |-  ( ph -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) | 
						
							| 50 | 3 2 32 33 15 5 1 14 49 | aks5lem5a |  |-  ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 51 | 1 2 3 4 5 6 7 8 9 10 11 12 13 50 | aks6d1c7 |  |-  ( ph -> N = ( P ^ ( P pCnt N ) ) ) |