Metamath Proof Explorer


Theorem aks5lem6

Description: Connect results of section 5 and Theorem 6.1 AKS. (Contributed by metakunt, 25-Jun-2025)

Ref Expression
Hypotheses aks5lem6.1
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) }
aks5lem6.2
|- P = ( chr ` K )
aks5lem6.3
|- ( ph -> K e. Field )
aks5lem6.4
|- ( ph -> P e. Prime )
aks5lem6.5
|- ( ph -> R e. NN )
aks5lem6.6
|- ( ph -> N e. ( ZZ>= ` 3 ) )
aks5lem6.7
|- ( ph -> P || N )
aks5lem6.8
|- ( ph -> ( N gcd R ) = 1 )
aks5lem6.9
|- A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) )
aks5lem6.10
|- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) )
aks5lem6.11
|- ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) )
aks5lem6.12
|- ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) )
aks5lem6.13
|- ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 )
aks5lem6.14
|- S = ( Poly1 ` ( Z/nZ ` N ) )
aks5lem6.15
|- L = ( ( RSpan ` S ) ` { ( ( R ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( -g ` S ) ( 1r ` S ) ) } )
aks5lem6.16
|- X = ( var1 ` ( Z/nZ ` N ) )
aks5lem6.17
|- ( ph -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) )
Assertion aks5lem6
|- ( ph -> N = ( P ^ ( P pCnt N ) ) )

Proof

Step Hyp Ref Expression
1 aks5lem6.1
 |-  .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) }
2 aks5lem6.2
 |-  P = ( chr ` K )
3 aks5lem6.3
 |-  ( ph -> K e. Field )
4 aks5lem6.4
 |-  ( ph -> P e. Prime )
5 aks5lem6.5
 |-  ( ph -> R e. NN )
6 aks5lem6.6
 |-  ( ph -> N e. ( ZZ>= ` 3 ) )
7 aks5lem6.7
 |-  ( ph -> P || N )
8 aks5lem6.8
 |-  ( ph -> ( N gcd R ) = 1 )
9 aks5lem6.9
 |-  A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) )
10 aks5lem6.10
 |-  ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) )
11 aks5lem6.11
 |-  ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) )
12 aks5lem6.12
 |-  ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) )
13 aks5lem6.13
 |-  ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 )
14 aks5lem6.14
 |-  S = ( Poly1 ` ( Z/nZ ` N ) )
15 aks5lem6.15
 |-  L = ( ( RSpan ` S ) ` { ( ( R ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( -g ` S ) ( 1r ` S ) ) } )
16 aks5lem6.16
 |-  X = ( var1 ` ( Z/nZ ` N ) )
17 aks5lem6.17
 |-  ( ph -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) )
18 eluzelz
 |-  ( N e. ( ZZ>= ` 3 ) -> N e. ZZ )
19 6 18 syl
 |-  ( ph -> N e. ZZ )
20 0red
 |-  ( ph -> 0 e. RR )
21 3re
 |-  3 e. RR
22 21 a1i
 |-  ( ph -> 3 e. RR )
23 19 zred
 |-  ( ph -> N e. RR )
24 3pos
 |-  0 < 3
25 24 a1i
 |-  ( ph -> 0 < 3 )
26 eluzle
 |-  ( N e. ( ZZ>= ` 3 ) -> 3 <_ N )
27 6 26 syl
 |-  ( ph -> 3 <_ N )
28 20 22 23 25 27 ltletrd
 |-  ( ph -> 0 < N )
29 19 28 jca
 |-  ( ph -> ( N e. ZZ /\ 0 < N ) )
30 elnnz
 |-  ( N e. NN <-> ( N e. ZZ /\ 0 < N ) )
31 29 30 sylibr
 |-  ( ph -> N e. NN )
32 4 31 7 3jca
 |-  ( ph -> ( P e. Prime /\ N e. NN /\ P || N ) )
33 eqid
 |-  ( S /s ( S ~QG L ) ) = ( S /s ( S ~QG L ) )
34 16 eqcomi
 |-  ( var1 ` ( Z/nZ ` N ) ) = X
35 34 a1i
 |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( var1 ` ( Z/nZ ` N ) ) = X )
36 35 oveq1d
 |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) = ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) )
37 36 oveq2d
 |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) = ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) )
38 37 eceq1d
 |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) )
39 simpr
 |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) )
40 eqcom
 |-  ( ( var1 ` ( Z/nZ ` N ) ) = X <-> X = ( var1 ` ( Z/nZ ` N ) ) )
41 40 imbi2i
 |-  ( ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( var1 ` ( Z/nZ ` N ) ) = X ) <-> ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> X = ( var1 ` ( Z/nZ ` N ) ) ) )
42 35 41 mpbi
 |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> X = ( var1 ` ( Z/nZ ` N ) ) )
43 42 oveq2d
 |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( N ( .g ` ( mulGrp ` S ) ) X ) = ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) )
44 43 oveq1d
 |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) = ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) )
45 44 eceq1d
 |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) )
46 38 39 45 3eqtrd
 |-  ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) )
47 46 ex
 |-  ( ( ph /\ a e. ( 1 ... A ) ) -> ( [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) )
48 47 ralimdva
 |-  ( ph -> ( A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) )
49 17 48 mpd
 |-  ( ph -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) )
50 3 2 32 33 15 5 1 14 49 aks5lem5a
 |-  ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) )
51 1 2 3 4 5 6 7 8 9 10 11 12 13 50 aks6d1c7
 |-  ( ph -> N = ( P ^ ( P pCnt N ) ) )